
ARTICLE

�nATuRE CommunICATIons | 2:170 | DoI: 10.1038/ncomms1163 | www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

Received 8 nov 2010 | Accepted 15 Dec 2010 | Published 25 Jan 2011 DOI: 10.1038/ncomms1163

Food-web perturbations stemming from climate change, overexploitation, invasive species and 
habitat degradation often cause an initial loss of species that results in a cascade of secondary 
extinctions, posing considerable challenges to ecosystem conservation efforts. Here, we devise 
a systematic network-based approach to reduce the number of secondary extinctions using 
a predictive modelling framework. We show that the extinction of one species can often be 
compensated by the concurrent removal or population suppression of other specific species, 
a counterintuitive effect not previously tested in complex food webs. These compensatory 
perturbations frequently involve long-range interactions that are not evident from local 
predator–prey relationships. In numerous cases, even the early removal of a species that would 
eventually go extinct is found to significantly reduce the number of cascading extinctions. 
These compensatory perturbations only exploit resources available in the system, and illustrate 
the potential of human intervention combined with predictive modelling for ecosystem 
management. 
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Halting the loss of biodiversity caused by human and natural 
forces1–4 has become one of the grand challenges of this 
century. Despite the evolutionarily acquired robustness 

of ecological systems, the disappearance or significant suppres-
sion of one or more species can propagate through the food-
web network and cause other species to go extinct as the system 
approaches a new stable state5,6. A well-documented example is 
the trophic cascade observed over the past 40 years in the coastal 
Northwestern Atlantic Ocean, where the depletion of great sharks 
released cownose ray, whose enhanced predation on scallop has 
driven the latter to functional extinction in some areas7. The mas-
sive extinction of terrestrial and freshwater species, including 
butterflies, birds, fishes and mammals, that started in Singapore 
in the early 1800s is a striking example of an extinction cascade 
caused by heavy deforestation8. Invasive species, such as exotic 
aquatic species introduced by ballast water transported in com-
mercial ships, are yet another frequent cause of extinction of native  
species9. These species alter the food-web structure and dynam-
ics10, leading to potentially devastating long-term effects for the 
local ecosystem3.

A number of studies have been conducted on the prediction and 
analysis of secondary extinctions11, both structural12–16 and dynami-
cal17–22, after the loss of one species. However, there is a fundamental 
lack of understanding on how these cascades of secondary extinc-
tions could be mitigated. Different approaches to prevent species 
extinctions have been proposed in previous studies23, including the 
eradication or seasonal removal of a predator of a species that is in 
danger of extinction and, in few cases, the control of a population 
that is not in direct interaction with the species meant to be pro-
tected24. However, in most of these efforts the aim has been to save 
one species—generally a visibly endangered one25—at the potential 
expense of others. These interventions do not usually account for 
cascading effects and at times have been found to have an impact 
that was the opposite of the desired one26. Because of the integrated 
nature of food-web systems, a species that does not exhibit a feeding  
interaction with some other species can still have substantial influ-
ence on the other species’ population. Yet, the possibility of exploit-
ing this inherent complexity to prevent multiple extinctions has not 
yet been pursued.

Here, inspired by recent advances in the control of complex phys-
ical and biochemical networks27,28, we study mechanisms by which 
extinction cascades can be mitigated and identify compensatory 
perturbations that can rescue otherwise threatened species down-
stream the cascades. These compensatory perturbations consist of 
the concurrent removal, mortality increase or growth suppression 
of target species, which, as discussed below, are interventions that 
have a strong empirical basis and can in principle prevent most or 
all secondary extinctions.

Results
Rescue mechanism. The proposed rescue mechanism is illustrated 
in Figure 1. In this example, the sudden extinction of species P leads 
to the subsequent extinction of species S1 and S2 (Fig. 1b). However, 
the proactive removal of species F shortly after the initial extinction 
drives the system to a new stable state in which no additional species 
are extinct (Fig. 1c). The initial extinction, which we refer to as the 
primary removal (P), models the initial perturbation, whereas the 
proactive removal is the compensatory perturbation that we seek 
to identify. We refer to the latter as the forced removal (F). In this 
case, it prevents all secondary extinctions and leads to a system 
with ten instead of nine persistent species. The absence of feeding 
interactions between species F and the species involved in the 
cascade (Fig. 1a) illustrates the limitations of conclusions derived 
from direct inspection of the food-web structure, and emphasizes 
the importance of a modelling framework that can account for both 
the nonlinear and the system-level nature of the network response to 
perturbations. Following this example, we first consider the rescue 
effects of total species removals. Below we relax this condition to 
also consider partial removals and other interventions.

To explore the principle underlying the example of Figure 1, 
we developed an algorithm that we use to systematically identify 
compensatory perturbations. This is implemented using two well-
established models to describe the dynamics: the multi-species con-
sumer–resource model29,30, which allows for adaptive behaviour of 
the predators and takes into account different types of functional 
responses; and the predator–prey Lotka–Volterra model, which 
assumes a linear approximation for the interaction coefficients and 
does not involve adaptive strategies31 (see details in Supplemen-
tary Methods). Although the former is potentially more realistic, 
the Lotka–Volterra model allows for more thorough analysis. Our 
algorithm is based on identifying the fixed points (X1*,…,  Xn*  ) of 
the post-perturbation dynamics, which in the Lotka–Volterra case 
are given by X b a Xi i j ij j( )+ =Σ 0 , where Xi ≥ 0 and bi represent the 
population and mortality rate (or growth rate, in the case of the 
first trophic level), respectively, of species i, and aij represents the 
food-web structure. These fixed points are time-independent solu-
tions that we use as target states to design compensatory pertur-
bations whenever the number of extinct species is reduced at one 
such point. Specifically, we proceed as follows: (i) we start with a 
primary species removal on an initially persistent food web that, 
according to our model dynamics, is predicted to lead to secondary 
extinctions; (ii) we identify the fixed points of the dynamics under 
the constraint imposed by the primary removal—these fixed points 
typically have one or more species with zero population, in addi-
tion to the one corresponding to the primary removal; (iii) starting 
from fixed points with the largest number of positive populations, 
we test the impact of the forced removal of a species that has zero 
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Figure 1 | Example of the impact of species removal. (a) The removal of a basal species, P, triggers a cascade that leads to the subsequent extinction 
of two high-trophic species, S1 and S2, in this initially persistent 11-species food web. The removal of an intermediate-trophic species, F, shortly after the 
removal of P prevents the propagation of the cascade, and causes no additional extinctions. (b,c) The time evolution of the populations following the 
removal of P (b) and following the combined removal of P and F (c) shows that the otherwise vanishing populations of S1 and S2 can reach stationary 
levels comparable to or higher than the unperturbed ones in a time-scale of the order of the time-scale of the cascade (colour code defined in (a)).  
The long-range character of the underlying interactions is emphasized by the fact that species F is not directly connected to either the species triggering 
the cascade or the ones rescued. This food web was simulated using the consumer–resource model (supplementary methods). 
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population at the fixed point. This last step is implemented immedi-
ately after the primary removal and is repeated over different fixed 
points until the most effective forced removals are identified. For 
more details on the rescue algorithm, see Methods.

A similar algorithm is implemented in the case of the consumer–
resource model except that, because the characterization of the 
asymptotic dynamics is in that case more involved, the identifica-
tion of the rescues is done by exhaustive search over all possible 
forced removals and subsequent selection of the removals that min-
imize the number of extinctions. In either case, the forced removals  
are tailored to drive the system to a fixed point if the point is  
stable, or to the corresponding neighbourhood if the point is unsta-
ble (Supplementary Methods; Supplementary Figs S1–S3). We  
have implemented the proposed approach using both model and 
empirically observed food webs.

Model food webs. Our model food webs were generated using 
the niche model32, which is based on ecologically relevant princi-
ples (Supplementary Methods). Within this model, we consid-
ered extinction cascades triggered by the primary removal of one  
species in initially persistent food webs33. As a compromise between 
computational feasibility and complexity, we focused mainly 
on food webs of 15 species generated from a connectance of 0.2, 
which, in the case of the consume–resource dynamics, were taken 
to have a mixed vertebrate–invertebrate community type (Sup-
plementary Methods). The evolution of these food webs can be 
either time-dependent or -independent and will generally depend 
on the structure of the network, parameter choice and dynami-
cal model34. We also analysed the impact of systematically varying 

the food-web parameters and the size of the primary perturbation  
(see below). In all cases, the number of cascades mitigated by  
the forced removal of one species is found to be comparable or 
larger than the number of cascades not mitigated (Supplementary 
Methods), which provides evidence that the proposed procedure 
applies to diverse systems. For detailed statistics on the number 
of rescued species, see Supplementary Methods and Supplemen-
tary Fig. S4. But what are the network mechanisms affording these  
rescue interactions?

Figure 2 shows the feeding relations between the primary removal 
P and forced removal F in the model food webs whose cascades are 
mitigated. In this figure, as well as in other parts of this study, the 
trophic levels are estimated using the prey-averaged trophic level 
algorithm35. By comparing these two species with baselines in which 
one or both are replaced by randomly selected species, we demon-
strate that rescue interactions are more likely than at least one of 
the baselines for (I) P feeding on F, (II) F feeding on P, and (III) 
F at a higher trophic level than P (while not sharing a predator–
prey link with P). These are also the most common scenarios in 
absolute numbers, accounting for more than 85% of all rescues 
for both the consume–resource (Fig. 2a) and the Lotka–Volterra  
(Fig. 2b) dynamics. The two dynamical models also exhibit signifi-
cant differences. The most fundamental difference, which follows  
from a direct comparison between the baseline models, is that  
P is biased towards lower trophic levels for the consumer–resource 
model, whereas it is distributed more uniformly for the Lotka– 
Volterra model. This explains the larger frequency of rescues for 
scenario III in Figure 2a when compared with Figure 2b, and at least 
part of the difference for scenarios II and I. The observed difference 
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Figure 2 | Rescue interactions predicted for model food webs. (a,b) Classification of the mitigated cascades (blue) according to the feeding relations 
between the primary removal P and forced removal F, and associated baseline models, in which F (brown) or both P and F (green) are replaced by random 
species. The statistics are for forced removals that rescue the largest number of species in networks of 15 species. The relations are organized according 
to whether P and F are in the same trophic level (Tp = Tf), share a predator–prey link (P eats F or F eats P), have a reciprocal predator–prey interaction (P<–>F),  
or are in different trophic levels without being directly connected (Tp > Tf or Tp < Tf). For simplicity, we use the ‘predator-prey’ terminology also when the 
feeding interactions involve basal species. The bottom sets indicate the local network structure of the scenarios that have a frequency higher than one 
or both of the baselines, where S indicates a species that would be part of the extinction cascade and is rescued by the removal of F: if F and S share a 
common prey i, then the removal of F causes an increase in i (in 98.0% (a) and 98.3% (b) of the occurrences if F and S are not connected and 82.5% 
(a) and 98.9% (b) if S feeds on F as well), which helps to sustain S; if F and S share a common predator i, then the removal of F causes a decrease in i (in 
57.1% (a) and 87.6% (b) of the occurrences), which often reduces predation of S; a fourth case is when F is directly feeding on S, and hence its removal 
tends to enhance S (F would otherwise increase following the removal of P in 54.0% (a) and 70.1% (b) of such occurrences). The percentages in the 
bottom sets indicate the fractions of forced removals in the corresponding category that take part in the network structures shown. The total percentages 
(bottommost) also account for co-occurrences of different such structures for the same forced removal. 
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in the distribution of P is most likely due to the adaptive strategy 
inherent to the consumer–resource dynamics. (Another difference 
evident from Fig. 2 is that the Lotka–Volterra case exhibits a larger 
number of rescues for P and F in the same trophic level, but this 
is mainly because the (initially persistent) Lotka–Volterra networks 
tend to have a larger number of basal species than the consumer–
resource networks (Supplementary Methods)).

The higher than-by-chance frequency of scenario I indicates  
that cascades can often be mitigated by suppressing a low-trophic 
species released by the initial perturbation. Surprisingly, examina-
tion of the local network structure reveals that this suppression is 
more frequently mediated by a predator or a prey that is common to 
both F and a rescued species S than through a direct predator–prey 
link between F and S (Fig. 2, bottom sets). In some cases the released 
species is a mesopredator36, but we note that for scenario I species 
F is frequently basal (26% of the cases in Fig. 2a and 75% of the  
cases in Fig. 2b, when averaged over the potentially non-unique  
F that reduce the most a cascade triggered by a given P). For P feed-
ing on F, over 87% of the P–F pairs in Figure 2a and 97% in Figure 2b  
involve at least one network structure in which F is related to  
S either directly or by a common predator or prey. Similar struc-
tures and statistics are found for P and F exhibiting different feeding  
relations. This holds, in particular, for scenario III, where the inter-
action between P and F is also indirect.

To further clarify their role, in Figure 2 we also analyse the 
dynamics on these local network structures shortly after the removal 
perturbations. For example, more than 98% of all cases shown in 
which F and S share a common prey i and S does not feed on F, the 
removal of F increases the population of i, which tends to favour 
S. (Such percentages were calculated one time unit after the per-
turbations and were found to be highly correlated with the corres-
ponding asymptotic behaviour.) More interesting, in over 57% of 
the cases in Figure 2a and 87% in Figure 2b in which F and S share 
a common predator i, the removal of F rescues S while decreasing 
the population of i, which indicates that the loss of a prey tends not 
to be fully transferred to the remaining preys even in the (adaptive) 
consumer–resource model. This transfer effect has been found to 
be relevant in specific case studies, such as in the fox-pig-eagle food 
web of the Channel Islands37. These mechanisms are not exhaustive 
and other long-range interactions are likely to play a role, as illus-
trated by the fact that over 30% of the mitigated cascades in scenario 
III involve a situation in which a species is rescued upon removal of 
one of its preys; a related, longer-range ‘S feeding on F ’ structure is 
identified below in the case of the Chesapeake Bay food web.

Nondestructive interventions. Having shown that the locally 
 deleterious removal of a species can have a net positive global 
impact in the imminence of an extinction cascade, we now consider 
three strictly nondestructive interventions. First, under appropriate  

conditions, the early removal of a species that would otherwise 
be eventually extinct by the cascade can prevent all other second-
ary extinctions (Methods). One such example is given in Figure 3a, 
in which the primary removal of species P causes the subsequent 
extinction of nine species, but the removal of (the cascading) species 
F shortly after the initial perturbation drives the system to a stable 
fixed point where all other populations are positive. This is a dramatic 
example of how the fate of a food web can depend on the order and 
timing of the events as much as it does on the events themselves.

Second, the partial removal of one or more species can often 
prevent all secondary extinctions. This is generally possible if after 
the primary removal the dynamics has a fixed point in which (a) 
all other populations are positive and (b) the populations of one or 
more species are smaller than the corresponding populations at the 
early post-perturbation state. The rescue intervention then consists 
on partial removals of these species to reduce their populations to 
those of the target fixed point (Methods). This case is exemplified in 
Figure 3b, where the partial removal of four species fully compen-
sates for the perturbation caused by the primary removal of species 
P, and rescues all seven otherwise vanishing species.

Third, the manipulation of the growth and mortality rates of basal 
and non-basal species, respectively, is another intervention that can 
often prevent all secondary extinctions. We assume that growth rates 
can only be decreased and mortality rates can only be increased, 
which, like in the case of species removal, can be achieved by only 
exploiting natural resources available in the system. We consider all 
such changes that lead to time-independent dynamics (zero time 
derivative) for the populations of the corresponding species shortly 
after the initial perturbation (Methods). These interventions are 
designed to reduce the likelihood that these populations will oscil-
late or decrease to zero. This case is illustrated in Figure 3c, where the  
secondary extinctions of eight species triggered by the removal of  
P are prevented by manipulating the growth/mortality rates of six 
species. The statistics for total and partial cascade prevention are 
summarized in Supplementary Table S1 and Supplementary Fig. S4.

Empirically observed food webs. The empirically observed net-
works we considered are the Chesapeake Bay food web38, an aquatic 
network with 33 species, and the Coachella Valley food web39, 
a terrestrial network with 30 species, both modelled using the  
consumer–resource dynamics (Supplementary Methods). These 
systems, as many other empirically reconstructed food webs, are 
relatively robust against perturbations. To generate an appreciable 
number of cascades, these networks were perturbed by the primary 
removal of three rather than one species.

The Chesapeake Bay and the Coachella Valley food webs are 
explicitly analysed in Figure 4. The former is sparsely connected, has 
no loops and has a large number of top predators (Fig. 4a), whereas 
the latter is densely connected, has loops (including cannibalistic 
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Figure 3 | Examples of rescue interactions generated by optimally compensatory interventions. (a) The removal of one species (green) leads to the 
extinction of nine other species (yellow). The concurrent forced removal of one of the otherwise vanishing species (blue ring) prevents all other cascading 
extinctions. (b) The removal of one species causes the extinction of seven other species. The partial removal of four species (blue rings) prevents all 
cascading extinctions. (c) The removal of one species leads to the extinction of eight other species. The permanent reduction of the growth rate of three 
basal species and increase of the mortality rate of three non-basal species (blue rings) prevent all cascading extinctions. These food webs were simulated 
using the Lotka–Volterra dynamics. note that in all cases there is an overlap between the species forming the cascade and the ones that are proactively 
manipulated to prevent the cascade. 
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links) and has no top predator (Fig. 4b). For both food webs, under 
the conditions considered in our study, the random assignment of 
initial populations leads to a single time-independent state, which we 
perturbed by all three-species primary removals and tested against 
all single-species forced removals. Figure 4 represents the average 
over all such independent realizations for which a cascade can be 
mitigated (835 in Fig. 4a and 283 in Fig. 4b), where the probability 
that a species removal will mitigate or participate in triggering a 
cascade is coded in the colour and size of the nodes, respectively, 
whereas the probability that a feeding interaction is eliminated by 
a cascade is coded in the width of the links. As in other parts of 
this study, the rescue statistics are drawn from all forced removals 
that prevent the largest number of extinctions in the given cascade. 
In both networks, a group of only two low trophic level non-basal 
species is responsible for rescuing over 96.2% (Chesapeake Bay) 
and 99.3% (Coachella Valley) of all mitigated cascades (a fraction 
of these cascades can be equally well mitigated by other forced 
removals). Note that the network positions of these species are not 
too different from the basal ones that are among the most likely to 
cause cascades. The rescues in the Chesapeake Bay food web are  
frequently determined by a long-range mechanism in which the 
closest interaction is by means of a prey of S that feeds on a prey  
of F, which, counterintuitively, remains frequent even when S also 
feeds on F (Fig. 4a). In the Coachella Valley food web, on the other 
hand, the rescues most frequently involve a mechanism, already 
identified in the model networks, in which F and S share a common 
prey species (Fig. 4b). It is interesting to notice that although our 
approach can reveal these rescue interactions, they are by no means 
evident from the network structure alone.

Rescuable and non-rescuable species. Our results raise the funda-
mental question of identifying the species that can be rescued by 

these interventions. For this purpose, we note that all cascading 
extinctions can be classified into structural extinctions and dynami-
cal extinctions. A structural extinction occurs when a species is left 
with no directed paths connecting it to basal species in the food 
web12. A dynamical extinction, on the other hand, is not directly 
caused by connectivity limitations and is instead determined by the 
dynamical evolution of the food web. By their own nature of con-
straining system parameters or variables, the rescue interventions 
considered in this study cannot prevent structural extinctions. How-
ever, they can, at least in principle, prevent dynamical extinctions.

Irrespective of being dynamical or structural, cascading extinc-
tions occur when the trajectory describing the evolution of the  
system falls into the basin of attraction of an attractor for which 
one or more species have zero population (Methods). Once found to  
be in a given basin of attraction, the occurrence of subsequent 
extinctions is entirely determined, and can only be prevented by 
rescue interventions such as those considered in this study. A rescue 
perturbation shifts the state of the system to the basin of an attractor 
(for example, a stable fixed point) with a larger number of nonzero-
population species, and this is only possible in the case of dynami-
cal extinctions. The size of a basin of attraction, and hence the 
occurrence of dynamical (but not structural) extinctions, depends  
on the minimum viable population size40, which is accounted for 
by a threshold s in our models (Methods). This can be rationalized 
by categorizing the dynamical extinctions into those due to system-
atic population decrease and those due to oscillations. Although the 
former do not directly depend on s, some of the latter extinctions 
may be absent for smaller s. Most importantly, our numerical exper-
iments demonstrate that both types of dynamical extinctions can be  
mitigated by the rescue perturbations we consider.

For all scenarios considered in our study of model networks, 
more than 74% of the cascading extinctions are dynamical, and 
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hence, potentially preventable. This fraction is larger for the Lotka–
Volterra than for the consumer–resource model. In the latter case 
we also considered the effect of other parameters, and observed 
that this fraction is larger for smaller number of primary removals, 
for larger connectance and for larger fraction of vertebrate species.  
All this is consistent with the observed increased availability of  
basal species and of possible network paths to reach them from other 
species. In many cases the number of species rescued corresponds 
to the theoretical maximum (Supplementary Methods), which is 
generally possible for cascades that only involve dynamical extinc-
tions. The fraction of cascades mitigated (to any extent) by forced 
removals tends to exhibit very weak dependence on connectance 
and tends to decrease with an increase in the size of the primary 
perturbation. There is also a small dependence on the type of com-
munity, in which the fraction of mitigated cascades is higher for ver-
tebrates, and the difference matches the corresponding difference 
in the fraction of purely structural cascades. Very importantly, the 
fraction of mitigated cascades is observed to consistently increase 
as the number of species in the network is increased, for both the 
Lotka–Volterra and the consumer–resource model and for all forms 
of rescue intervention considered. This provides evidence that the 
potential benefit of rescue perturbations can in fact be more pro-
nounced for larger food webs. For details on the parameter depend-
ence, see Supplementary Methods and Supplementary Figs S5–S8.

Discussion
Our proof-of-principle analysis provides a theoretical foundation 
for the study of extinction cascades in which locally deleterious 
perturbations can partially or completely compensate for other del-
eterious perturbations. As a context for the interpretation of these 
results, it should be noted that wildlife population controls in the 
form of partial or complete removals, growth suppression and mor-
tality increase of target species have been experimentally applied to 
both invasive and native species in a number of scenarios in which 
extinction cascades were not explicitly accounted for.

This has been implemented via hunting, fishing, culling, targeted 
poisoning and non-lethal removals, and is expected to also benefit 
from fertility control methods in the future23,41,42. Such interventions 
may be required to correct unbalances introduced by human activ-
ity that gave one species advantage over the others, or to mimic the 
effect of previously removed natural predators in preventing spe-
cific populations from crossing the carrying capacity of the area. In  
addition, several projects involving the total removal of one or more 
species have been completed successfully. An important example 
is the recent removal of feral pigs from Santiago Island, in Ecua-
dor, which were introduced just a few years after Darwin’s 1835 
visit to the archipelago. This successful eradication was completed 
in the year 2000 and is impressive both because of the area of the 
island (over 58,000 ha) and the number of individuals removed 
(over 18,000 pigs)43. Another remarkable example is provided by 
the Channel Islands, in California, where the introduction of feral  
pigs drove the population of foxes close to extinction by attracting 
to the islands a native common predator, the golden eagle. To pre-
serve the foxes, both pigs and eagles were completely removed from 
Santa Cruz, the largest of the Channel’s Islands. The management 
strategy consisted of non-lethal removal of eagles (for example, by 
capturing them with net guns) followed by the lethal removal of  
the pigs. The order of the removals has been shown to be critical 
for the preservation of the island fox37 and was defined on the basis  
of food-web models of the same nature of those used in our  
study24, thus illustrating the usefulness of such models in manage-
ment decisions.

By accounting for the cascading consequences of network  
perturbations, our study addresses an important new aspect 
involved in these population control applications. We showed that 
such consequences are often counterintuitive and hence difficult to 

anticipate from qualitative analysis. An important element in our 
analysis is the reliability with which the dynamics of the species’ 
populations can be forecast. Another key element is the feasibility of  
the interventions themselves. As the above precedents indicate, 
population suppression and the other interventions considered in 
our analysis should be interpreted as limited to islands, lakes, parks 
and other local areas, without involving the large-scale eradication 
of any species. They may be implemented in concert with economi-
cal activities, such as fishing and hunting, but may also be carried 
out by means of non-lethal growth suppression and relocation. 
These conclusions are not limited to extinction cascades triggered 
by an extinction event and can be extended, for example, to mitigate 
the impact of invasive species.

Taken together, our results suggest that rescue interactions per-
mitting compensatory perturbations are common in food-web 
systems and that the identification of such interactions can both 
benefit from accurate food-web models32,44–46 and help constrain 
such models for stability47–51. These results also provide evidence for 
the growing understanding that preservation requires more than 
the absence of active destruction52, and promise to offer important 
insights in combination with ongoing projects on proactive man-
agement actions, such as assisted migration53.

Methods
Target states. In the case of the Lotka–Volterra system, X X b a Xi i i j ij j= +( )Σ , 
i = 1,…,n, our approach can be formalized in terms of the properties of asymptotic 
stationary states associated with fixed points of the dynamics. The fixed points are 
given by the set of equations X b a Xi i j ij j( )+ =Σ 0, which can be factored as  
 
   b a Xi

j
ij j+ =∑ 0,                 

(1)
 

   
and or/ ,Xi = 0

                
(2)

 

where i = 1,…,n. We denote by X* = (X1* ,…, Xn*  ) the fixed points that correspond to 
valid solutions of equations (1) and (2), that is, solutions for which all populations 
are non-negative. This set of equations always has at least one solution, namely 
the solution for which only equation (2) is satisfied, and all populations are zero. 
In most cases, however, a large number of other valid solutions exist (up to 2n if 
matrix A = (aij) is invertible, as observed for the randomly generated connection 
strengths considered in our simulations, and up to infinitely many if A is singular). 
Given a species removal perturbation that triggers a cascade of extinctions,  
we denote by np the number of nonzero-population species shortly after the  
perturbation, by nc the number of nonzero-population species after the cascade  
and by n* the number of species with nonzero population at fixed points that  
correspond to valid solutions consistent with the constraints imposed by the  
primary perturbation. Following a perturbation, we refer to such fixed points  
that in addition satisfy n* > nc as target states. The corresponding populations 
shortly after the perturbation and after the cascade are denoted by Xi

p and Xi
c,  

respectively; hereafter, we use Xi* and n* specifically to denote the populations 
and number of persistent species at target states. Given that the number of non-
zero-population species before the perturbation is n, it follows that nc < np < n and 
nc < n*≤np.

Rescue interventions. Our rescue strategy is based on identifying (and proactively 
driving the system towards) a target state, thus preventing the extinction of one or 
more species. We considered the following algorithmic implementations of this 
concept.

In the case of a forced species removal, focusing on fixed points that satisfy the 
constraints imposed by the primary removal, we first identify all target states with 
n* < np. We then test one-by-one the forced removal of each species i for which 
Xi* = 0 at one or more of these states. The forced removals are implemented shortly 
after the primary removal, hence before the propagation of the cascade. The system 
is then evolved to test the impact of these removals. We select the tested removals 
that lead to the largest reduction in the number of secondary extinctions. This 
approach is applicable to cases in which nc ≤ np − 2, that is, if the cascade would 
otherwise consist of two or more extinctions.

For the forced removal of a cascading species, we test one-by-one the forced 
removal of every species that would be extinct by the cascade, and select the 
removals that lead to the largest reduction in the number of secondary extinctions. 
This is thus similar to the approach just described, except that it is now limited to 
the set of all cascading species.

In the case of forced partial removals, starting from the target states with the 
smallest number of zero-population species (including possibly states with n* = np), 
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we test the concurrent partial removal of all species i for which X Xi i
p* <  at the 

given fixed point. These partial removals consist of reducing the population of 
species i to Xi* shortly after the primary removal (total removals are thus included 
whenever Xi* = 0). The partial removals are tested for all target states on a one-by-
one basis. We select the sets of partial removals that lead to the largest reduction in 
the number of secondary extinctions. This approach is also applicable to cases in 
which nc = np − 1.

Concerning manipulation of growth and mortality rates, we test the impact of 
growth rate reduction and mortality rate increase by seeking new rates bi* that 
solve the equation   
  

b a Xi
j

ij j
p* + =∑ 0

                 
(3)

 

under the constraints that bi* ≤ bi if bi < 0 (mortality rate) and 0 ≤ bi* ≤ bi if bi > 0 
(growth rate). For all species i that admit such a solution, the corresponding bi  
are replaced by bi* right after the primary perturbation, with the others kept 
unchanged. The system is then evolved to determine the impact of this modifica-
tion in reducing the number of secondary extinctions. This modification increases 
the likelihood that the asymptotic dynamics of the corresponding species will 
satisfy equation (1), or exhibit time-dependent behaviour, as opposed to satisfying 
equation (2). This approach is applicable to cases in which nc ≤ np − 1 as it does not 
involve the removal of any species.

The rationale underlying these interventions is that by setting the parameters of 
one or few species at the values of a fixed point with a reduced number of extinc-
tions, the system will often evolve towards that fixed point (or towards an attractor 
in a common subspace if the fixed point is unstable), and secondary extinctions 
will be mitigated. Indeed, as shown in this study, the asymptotic number n*new of 
nonzero-population species after any of these compensatory perturbations is  
often larger than nc. In general, n*new is smaller than or equal to the number n* of 
nonzero populations at the fixed points we target, and the inequality arises from 
the fact that the system may evolve to a different fixed point or other attractor with 
additional zeros.

Stability considerations. The stability of the fixed points is determined  
by the eigenvalues of the corresponding Jacobian matrix J = (Jik), where  
J X a b a Xik i ik i j ij j ik= + +* * *( )Σ d , and bi* is now used to denote both modified and 
unmodified rates at the fixed points. Note that, at a fixed point, the second term on 
the right hand side of the Jacobian matrix is zero for all species i for which Xi* > 0. 
We thus focus on the reduced Jacobian matrix  J Jik= ( ) determined by the  
nonzero-population species,   
   J X aik i ik= * ,                 (4) 

where the indexes {i, k} range over all n* species for which Xi*, Xk* > 0. A fixed 
point X* is linearly stable (unstable) if the real part of the largest eigenvalue of  
 J J X= ( )*(X*) is negative (positive). Rescue interventions based on forced removals 
can be effective even for unstable fixed points because of attractors with a reduced 
number of extinctions that may exist in a common subspace (Supplementary 
Methods).

Effect of minimum population size. The reduction of the Jacobian matrix from  
Jn×n to Jn n* *×  is consistent with our selection of a threshold s for the populations 
below which they are assumed to vanish, which is not accounted for by linear  
stability alone. Biologically, this represents the irreversibility of an extinction  
process. Mathematically, this means that the dynamics of species i is governed by  
X X b a Xi i i j ij j= + ∑( ) if Xi ≥ s for all previous times and by Xi = 0 if Xi < s at any 

previous time, where, in our simulations, we take s to be the same for all species. 
Therefore, we regard Xi to be permanently zero and the Jacobian matrix to be 
reduced once Xi < s. The evolution of individual species and the occurrence of ex-
tinctions depend on the threshold value s. This simply indicates that the robustness 
of the system depends on the minimum viable population size. In the language of 
dynamical systems, we can say that the basin of attraction associated with an at-
tractor defined by the extinction of one or more species will generally change with 
increasing s. However, once an extinction cascade is triggered, the compensatory 
interventions are found to be similarly effective for values of s ranging over many 
orders of magnitude. In all simulations of both dynamical models presented in the 
paper, s was set to be 10 − 3. 
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