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Supplementary Figures

Supplementary Figure S1: Effects of stochasticity. Scenarios (a) and (b) correspond to the control problems de-
picted in Supplementary Figures S4a and S4b, respectively, where xA and xB are the attractors of the noiseless
dynamics and yellow and blue their corresponding basins of attraction in the deterministic case. The intervention
x0 → x�

0 represents the compensatory perturbation which, in the absence of noise, results in an orbit that carries the
system to the target (xB and xA, respectively). This example illustrates that when noise is added to the dynamics,
however, the system may fail to reach the target attractor, possibly approaching the other attractor instead (red curves).
This can be attributed to the proximity of x�

0 to the corresponding basin boundary. The situation can be remedied
by making an additional perturbation x�

0 → x��
0 that places the system further inside the target basin of attraction,

increasing the likelihood that the noisy orbit (grey) will reach the target. The noise strength is s = 0.03 for all orbits
pictured here.

2



0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

networks
! = 10

0.0 0.005 0.01 0.015 0.02
noise strength, !

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

networks
! = 20

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

Fig. S4a

0.0 0.01 0.02 0.03
noise strength, !

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

Fig. S4b

a

b

c

d

Supplementary Figure S2: Robustness of compensatory perturbations against noise. The curves indicate the
success rate of compensatory perturbations predicted using deterministic models when noise of r.m.s. amplitude s is
added to the dynamics, for the compensatory perturbations as predicted using our original computational approach
(red), and modified compensatory perturbations that are systematically identified to be further inside the target basin
of attraction (grey). (a, b) Mechanical example system, with the initial target states considered in Supplementary
Figures S4a and S4b, respectively. (c, d) Ensemble of 100 random networks and initial and target states as considered
in Supplementary Figure S7 for sizes N = 10 and 20, respectively. In all scenarios, a point corresponds to 1,000
independent sample paths of the noisy dynamics. Each point in (a, b) represents 1,000 noisy orbits starting from
the corresponding perturbed state, while each point in (c, d) represents 10 such orbits for each of the 100 network
realizations of the given network size. In every case, the approach to the target can thus be insulated against noise with
a slight modification of the compensatory perturbation procedure, thereby preserving its effectiveness.
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Supplementary Figure S3: Robustness of compensatory perturbations against parameter uncertainty. (a, b)
Bars denote the success rate of candidate compensatory perturbations in directing network to the target, for the com-
pensatory perturbations predicted by our original computational procedure (red) and the modified compensatory per-
turbations as described in the Supplementary Discusison (grey). Each set of bars represents a sample of 1, 000 random
networks and initial and target states as considered in Supplementary Figure S7, and the success rate for each of these
networks is an average over 100 randomized parameter sets in which we allow every parameter of the system to vary
independently and uniformly within a range of ±5% about its nominal value. In both cases, the significantly higher
success rate for the modified perturbations demonstrates that failure to control the system is buffered against parameter
uncertainty by driving the system further inside the target basin. (c, d) Distribution of distances between the target
state of the original network and the corresponding stable state of the networks with modified parameters considered
in panels (a) and (b), respectively. The distances are normalized by the (common) equilibrium value of the dynamical
units in the target state �xB (compare with Supplementary Fig. S7a).
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Supplementary Figure S4: Illustration of the control process in two dimensions. Yellow and blue represent the
basins of attraction of the stable states xA and xB, respectively, while white corresponds to unbounded orbits. (a, b)
Iterative construction of the perturbation for an initial state in the basin of xA with xB as a target (a), and for an initial
state on the right side of both basins with xA as a target (b). Dashed and continuous lines indicate the original and
controlled orbits, respectively. Red arrows indicate the full compensatory perturbations. Individual iterations of the
process are shown in the insets (for clarity, not all iterations are included).
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Supplementary Figure S5: Examples of compensatory perturbations in a system with fractal basins. Section of
the state space of eq. (S1) at t = 0 mod 2π. The basins of the clockwise (x+) and counterclockwise (x−) attractors
are colored grey and white, respectively. The basins were calculated by sampling the pictured portion of the state space
at a resolution of 1, 000 points along each coordinate direction. The points at which the attractors strike the plane,
which are taken as the corresponding target states within our method, are marked with a red and blue ×, respectively.
The right panels show examples of compensatory perturbations found by our method that take an initial condition
(black ×) in the basin of x− and move it to the basin of x+ (red), and vice versa (blue).

6



Supplementary Figure S6: Examples of compensatory perturbations in a system with riddled basins. Section
of the state space of eq. (S2) through ẋ = ẏ = t mod 2π

ω = 0. Initial conditions corresponding to unbounded orbits
(|y| → ∞) are shaded in grey. The basin of attraction of the chaotic attractor that lies in the subspace defined by
y = ẏ = 0 appears in white. Initial conditions were sampled at a resolution of 1, 000 points along each coordinate
direction. The right panels show two examples of compensatory perturbations found by our method that take initial
conditions corresponding to unbounded orbits (black ×) and drive them into the basin of the chaotic attractor.
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Supplementary Figure S7: Control of large random networks. (a) State space of the two-gene subnetwork rep-
resented in the inset, where the curves mark the boundaries between the basins of xA, xB, and xC. (b) Illustration
of compensatory perturbation on the genetic networks described by equation (S5), where each node is a copy of the
two-gene system. We are given an initial network state �x0 representing the expression levels of the N gene pairs
(color coded), and this state evolves to a stable state of the network �xu (top path). The goal is to knockdown one or
more genes to reach a new state �x�

0 that instead evolves to a target stable state �x∗ �= �xu (bottom path). (c, d) Average
computation time (c) and average number of iterations (d) required to control networks of N nodes with initial state
�x0 = �xA and target �x∗ = �xB, demonstrating the good scalability of the algorithm. Each point represents an average
over 1, 000 independent random network realizations.
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Supplementary Figure S8: Efficiency for alternate initial and target states. Counterparts to Supplementary Figure
S7c-d for: (a, b) initial state �x0 = �xA, target state �x∗ = �xC; and (c, d) initial state �x0 = �xB, target state �x∗ = �xA.
The other combinations of initial and target states involving �xA, �xB, and �xC follow from these ones and the one
in Supplementary Figure S7c-d by symmetry. The approximately N5/2 dependence of the computation time and
sublinear dependence of the number of iterations are largely independent of the particular initial and target states
under consideration.
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Supplementary Table

Supplementary Table S1: Control procedure parameter values. The relevant parameters are the integration time
(τ ) and tolerance (κ) used to test convergence to the target state, the limit on the number of iterations (I), the lower (�0)
and upper (�1) bounds on the size of each incremental perturbation, and the time window (T ) over which the closest
approach to the target is identified.

τ κ I �0 �1 T

T Cell signaling network 103 10−2 104 10−3 10−2 5

Associative memory network 2× 102 10−2 104 10−3 10−2 10

New England power grid 103 10−1 104 10−2 10−1 10

2D potential system 104 10−2 103 10−3 10−2 10

Random genetic networks 104 10−2 104 5× 10−3 5× 10−2 10
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Supplementary Methods

Termination criteria and control parameters. The control procedure is terminated if the updated
initial condition attracts to within a distance κ of the target state within τ time units. Otherwise,
we terminate the search if a compensatory perturbation is not found after a fixed number I of
iterations. In general, this number should be of the order of L/�0, where L is the characteristic
linear size of the feasible region. For each iteration, we use T time units within the integration
step that identifies tc, which was estimated based on the time to approach the undesirable stable
state. As described in the main text, the parameters �0 and �1 define the minimum and maximum
size of the incremental perturbation within the optimization step, respectively. Table S1 lists the
parameter values used for each of the systems we have studied.

In all systems we have studied, when a solution cannot be found, this is manifested in our
method as an inability to move the orbit any closer to the target, which eventually leads to oscil-
lations within the feasible region. The parameter I is always taken to be large enough that this
occurs before the iteration limit is reached. This also points to an alternative formulation of the
termination criterion in which the procedure is terminated if it revisits an initial condition x�

0 from
a prior iteration within a distance less than �0.

Construction of random genetic networks. The networks used in the Supplementary Discussion
are grown starting with a d-node connected seed network, by iteratively attaching a new node and
connecting this node to each pre-existing node i with probability d × Pi, where

�
i Pi = 1. The

connections are assumed to be unweighted and undirected. We reject any iteration resulting in a
degree-zero node, thereby ensuring that the final N -node network is connected and has average
degree > 2d for large N . Networks are generated with uniform attachment probability, where
Pi = 1/N (q) and N (q) is the number of nodes in the network at iteration q. In our simulations, we
focused on networks with d = 2.

Drawbacks of alternative implementations. The method introduced in the main text should be
compared with a number of apparently simpler implementations that could, in principle, be used
to search the network state space for the purposes of finding a compensatory perturbation. For
example, rather than keeping track of the variational matrix M(x0, t), which requires the integra-
tion of n2 additional differential equations at every iteration, one could imagine using backward
integration of a trajectory starting at x(tc) + δx(tc) to identify a suitable initial perturbation. This
alternative procedure suffers the critical drawback that, for a particular choice of δx(tc) (magni-
tude and direction), it is not certain that the time-reversed orbit will ever strike the feasible region
defined by equation (2) (main text). This is particularly so in realistic situations where only a frac-
tion of the nodes are accessible to perturbations, resulting in a feasible region of measure zero in
the full n-dimensional state space.
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Similar in spirit to our approach are standard shooting or “shoot-and-look” type methods,
which seek to solve an initial value problem such that it satisfies a particular boundary condition
(in this case, reaching the target at time τ ). These methods operate by making repeated adjustments
to the initial condition x0, observing how those adjustments change the orbit at a later time, and
then keeping those adjustments that move the orbit closer to the intended boundary value. The
problem is that in each step, in order to “look” we must first “shoot”, which requires an expensive
integration of the system dynamics. Our approach circumvents this by calculating the mapping
between all (small) initial perturbations and their images at later times (the variational matrix
M ), which allows us to determine the optimal “shot” at every iteration with only one integration.
Similar problems afflict other techniques that involve random adjustment and then updating of
data, such as simulated annealing. In the high-dimensional state spaces typical of real networks,
each successful update of the initial condition within these methods simply requires too many trial
sub-iterations, each of which entails evolving the system dynamics.

12



Supplementary Discussion

Illustration of control procedure in two dimensions. It is instructive to apply the control proce-
dure introduced in the main text to an example in two dimensions, where the basins of attraction
(and hence the possible compensatory perturbations) can be explicitly calculated and visualized.
Supplementary Figure S4 shows the state space of the system, which has two stable states, xA on
the left and xB on the right. The system consists of a particle in one dimension under the influence
of the potential U(x1) = exp(−γx2

1)(bx
2
1 + cx3

1 + dx4
1) and frictional dissipation η, where γ = 1,

b = −1, c = −0.1, d = 0.5, η = 0.1, and x2 = ẋ1. The method is illustrated for two different
initial states under the constraint that admissible perturbations have to satisfy x�

0 ≤ x0, i.e., one
cannot increase either variable.

For the initial state in the basin of state xA (Supplementary Fig. S4a), no admissible perturba-
tion exists that can bring the system directly to the target xB, on the right, since that would require
increasing x1. However, our iterative procedure builds an admissible perturbation vector that shifts
the state of the system to a branch of the basin Ω(xB) lying on the left of that point. Then, from
that instant on the autonomous evolution of the system will govern the trajectory’s approach to
the target xB, on the right. This example illustrates how compensatory perturbations that move
in a direction away from the target—the only ones available under the given constraints—can be
effective in controlling the system, and how they are identified by our method. The other example
shown illustrates a case in which the perturbation to an initial state on the right crosses an inter-
mediate basin, that of xB, before it can reach the basin of the target, xA (Supplementary Fig. S4b).
The linear approximation fails at the crossing point, but convergence is nonetheless assured by the
constraints imposed on δx0 (Methods). Our method is similarly capable of dealing with even more
complicated basin structures, such as fractal or riddled basins (see Effectiveness of control in the

presence of fractal basins and Effectiveness of control in the presence of riddled basins below).
For a step-by-step animation of the control procedure in this system, please refer to Supplementary
Movie.

Effectiveness of control in the presence of fractal basins. Systems with fractal basin bound-
aries may in principle be a challenge for our approach due to the possible existence of very long
transients before the orbit comes near the relevant attractor. To test our approach’s ability to cope
with this scenario, we have applied it to a well-known system exhibiting fractal basins, namely, a
driven, dissipative oscillator, whose dynamics obey

d2θ

dt2
+ ν

dθ

dt
+ sin θ = F cos t, (S1)

where θ denotes the phase of the oscillator and the values of the damping parameter (ν = 0.1)
and forcing parameter (F = 2.1) are taken from [29]. We identify a unique state within the three-
dimensional state space of this system by x = (x1, x2, x3) = (θ, θ̇, t), where the dot denotes a time
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derivative. This system posseses two periodic attractors each with period 2π and distinguished
by average clockwise or counterclockwise motion (�θ̇� positive or negative). We denote these
attractors by x+(t) and x−(t), respectively. A section of the state space at t = 0 mod 2π is
shown in Supplementary Figure S5, with the two (fractal) basins of attraction shaded. Given an
initial state x0 = (θ0, θ̇0, 0) in the basin of one attractor, we attempt to use our method to find a
compensatory perturbation that places the system in the basin of the other attractor. We use as a
target state the point on the other attractor at t = 0 mod 2π. Since we are primarily concerned
with our method’s ability (or inability) to find compensatory pertubations within the convoluted
state space, the only constraint we apply is that eligible perturbations cannot adjust the artificial
coordinate x3(0) that represents time. Note that since the dynamics are invariant under translation
of either θ or t by 2π, we measure differences along these coordinate directions modulo 2π for the
purposes of the distance metric used in our method. We use the conservative parameter choices of
�0 = 10−4, �1 = 10−3, κ = 10−3, I = 100, 000, τ = 100 × 2π, and T = 2π. The integration
time window T is deliberately chosen to be short (only one period) as a test of the importance of
long transients. In other words, our method will only consider a short initial portion of the orbit in
deciding how to proceed at every iteration.

The right panels of Supplementary Figure S5 show the results of two control experiments,
taking an initial point in the basin of x−(t) and targeting x+(t), and vice versa. Our method
successfully finds states in the target basin in both cases, and with little apparent difficulty—only
a few hundred iterations are required in either case, and we observe that the method makes more
or less consistent progress moving the orbit closer to the target. While we have shown only two
examples for clarity, these results are representative of 1, 000 initial states, chosen randomly from
the phase plane of Supplementary Figure S5, each of which we attempt to bring to the opposite
basin. Remarkably, our method is successful in over 99% of these cases. We posit that long
transients are not an issue because it is not critical that the uncontrolled orbit come “near” the
target, in any absolute sense. Rather, all that is necessary is a point on the orbit at which progress
can be made through an incremental perturbation. In the worst case, a long transient simply means
one must evolve the system dynamics for a longer time to verify which attraction basin the current
initial condition belongs to.

Effectiveness of control in the presence of riddled basins. Another complicated basin structure
that can arise in special cases is a so-called riddled basin, in which every point in the basin has
points of a different basin arbitrarily closeby (the basin is “riddled” with holes). While this property
could in principle pose problems for the identification of compensatory perturbations, we verified
that our approach can perform quite well in such systems. This is the case because, as for other
attractors, these basins too have non-zero measure in the state space. We used a most widely-
known system with a riddled basin introduced in ref. 62. The system consists a point particle of
unit mass moving in two dimensions r = (x, y) under the influence of the potential V (x, y) =
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(1− x2)2 + (x+ x̄)y2, with dynamics governed by

d2r

dt2
= −∇V + exf0 sinωt−ν

dr

dt
, (S2)

where the second and third terms represent the influences of a driving force and friction, respec-
tively, and ex is a unit vector in the x direction. We represent a point within the five-dimensional
state space by x = (x, ẋ, y, ẏ, t) and use the parameter values f0 = 2.3, ω = 3.5, x̄ = 1.9, and
ν = 0.05 given in ref. 62. For these parameters, this system posseses a chaotic attractor xA(t) in
the subspace defined by y = ẏ = 0, whose basin is riddled with initial conditions corresponding
to unbounded orbits (|y| → ∞). A (x0, y0) slice of the state space showing the riddled basin
structure is depicted in Supplementary Figure S6 for ẋ = ẏ = t = 0. Given an initial condition
in this plane corresponding to an unbounded orbit (grey), we attempt to use our method to bring
it to the basin of attraction of the chaotic attractor (white) by perturbing only the coordinates x0

and y0. Since the desired attractor is an extended set in this case, we use a single point on the
attractor (namely (x, ẋ, t) = (−0.991,−1.254, 1000)) as the target state within our method, which
is not directly reachable by any eligible perturbation. Nonetheless, our method is 100% successful
within a sample of 1,000 initial states selected randomly from the unbounded “basin” depicted in
Supplementary Figure S6. The parameters used for the control procedure in this analysis were
�0 = 10−4, �1 = 10−3, κ = 10−3, I = 100, 000, τ = 1000, and T = 10.

Effectiveness and computational efficiency. In order to validate our procedure for identifying
compensatory perturbations in networks, we consider networks of diffusively-coupled units—a
case that has received much attention in the study of spontaneous synchronization47. We take
as a base system the genetic regulatory subnetwork shown in Supplementary Figure S7a (inset),
consisting of two genes wired in a circuit. The state of the system is determined by the expression
levels of the genes, represented by the variables x1, x2 ≥ 0. The associated dynamics obeys

dx1

dt
= a1

xm
1

xm
1 + Sm

+ b1
Sm

xm
2 + Sm

− k1x1 + f1, (S3)

dx2

dt
= a2

xm
2

xm
2 + Sm

+ b2
Sm

xm
1 + Sm

− k2x2 + f2, (S4)

where the first two terms for each gene capture the self-excitatory and mutually inhibitory inter-
actions represented in Supplementary Figure S7a, respectively, while the final two terms represent
linear decay (k1,2) and basal activation (f1,2) rates of the associated gene’s expression. The param-
eter S represents the threshold above (below) which each gene is considered “on” (“off”). While
used here as a benchmark to test our computational approach, it is worth noting that models of this
form have been employed to describe the transition between progenitor stem cells and differenti-
ated cells40, 48, 49, and that genetic “switch” circuits have been recognized as important motifs for
the control of biochemical networks50. For a wide range of parameters, this system exhibits three

15



stable states: a state (xB) characterized by comparable expression of both genes, and two states (xA

and xC) characterized by the dominant expression of one of the genes. The former corresponds to
a stem cell state, and the latter correspond to two distinct differentiated cell types. Supplementary
Figure S7 and subsequent results correspond to the symmetric choice of parameters a1,2 = 0.5,
b1,2 = 1, k1,2 = 1, f1,2 = 0.2, S = 0.5, and m = 4. We assume that compensatory perturbations
are limited to decreases in gene expression, i.e., x�

0 ≤ x0. Our procedure applied to this system
identifies compensatory perturbations between all three stable states (Supplementary Movie).

We construct large networks by coupling multiple copies of the two-gene system described
above (Supplementary Methods). Such intercellular genetic networks may represent cells in tissue
or culture coupled by means of factors exchanged through their microenvironment or medium.
Specifically, we assume that each copy of the genetic system in equations (S3)-(S4) can be treated
as a node of the larger network. The dynamics of a network consisting of N such systems is then
governed by

dxi

dt
= f(xi) +

σ

di

N�

j=1

Aij[xj − xi], (S5)

where ẋi = f(xi) is the vectorial form of the dynamics of node i as described by equations (S3)-
(S4), the parameter σ > 0 is the overall coupling strength, and di is the degree (number of connec-
tions) of node i. The structure of the network itself is encoded in the adjacency matrix A = (Aij).
We use �x = (xi) to denote the state of the network, with �xA, �xB, and �xC denoting the network
states in which all nodes are at state xA, xB, and xC, respectively. The states �xA, �xB, and �xC are
fixed points of the full network dynamics in the 2N -dimensional state space and, by arguments of
structural stability, we can conclude they are also stable and have qualitatively similar basins of at-
traction along the coordinate planes xi if the coupling strength σ is weak. While we focus on these
three states, it follows from the same arguments that in this regime there are 3N − 3 other stable
states in the network. Under such conditions, compensatory perturbations between �xA, �xB, and �xC

are guaranteed to exist, and hence this class of networks can also serve as a benchmark to test the
effectiveness and efficiency of our method in finding compensatory perturbations in systems with
a large number of nodes.

A general compensatory perturbation in this network is illustrated in Supplementary Figure
S7b, where different intensities indicate different node states. Applied to the initial state �xA and
target �xB for σ = 0.05, the method is found to be effective in 100% of the cases for the 10, 000

networks tested, with N ranging from 10 to 100. Moreover, the computation time and number
of iterations for these tests confirm that our method is also computationally efficient for large net-
works. Computation time grows polynomially with N (Supplementary Fig. S7c), as expected since
each iteration requires the integration of O(N2) equations and each equation can be integrated in
O(1) time as long as the average degree remains essentially constant, as is the case in many net-
work models. The number of iterations grows as the square root of N (Supplementary Fig. S7d), in
agreement with the

√
N scaling of |�xA−�xB| and of the distances between other invariant sets. This
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leads to the asymptotic scaling N5/2 for the computation time. These properties are representative
of other choices of initial and target states (Supplementary Fig. S8). Note that our argument for
the time complexity does not depend on the particular functional form of the dynamics nor on any
parameter other than the dimension of the state space (which is usually proportional to the number
N of nodes, as assumed here).

Comparison with existing literature. Note that our approach is fundamentally different from
those usually considered in control theory, both in terms of methods and applicability. To appre-
ciate this, it is instructive to compare the problem addressed here—and the solution offered—to
other important problems that fall under the broad umbrella of “control”.

One well-developed meaning of “control” entails the optimization of specific system prop-
erties. Optimal control51, for example, is based on identifying an admissible (time-dependent)
control signal u(t) such that an orbit of the modified system dx/dt = G(x,u, t) will optimize a
given cost functional J(x,u). In this representation, the discrete interventions we consider would
take the form u(t) = u0δ(t− t0), where u0 is then a compensatory perturbation to be determined.
At first glance then, the discrete form of the controls we seek is the same as those used in impulse
control52. But we stress that here, the challenge is not to identify an “optimal” solution but a valid

solution in the first place (i.e., an eligible point x0+u0 inside the target’s basin of attraction). This
is a goal that cannot be easily guided by global optimization of any particular “cost” in a computa-
tionally tractable way, nor formulated simply as one or more closed form (in)equality constraints.
For this reason, the extensive and well-developed machinery of optimal control, impulse control,
model predictive control, and related methodologies unfortunately cannot be directly applied to
solve the problem considered here.

Another important sense of “control” concerns the stabilization of otherwise unstable (and
therefore uninhabitable) states. Control of chaos53, for instance, can be used to convert a chaotic
trajectory into a periodic one, and is based on the continuous application of unconstrained small
time-dependent perturbations to align the stable manifold of an unstable periodic orbit with the
trajectory of the system. Similar methods have been applied, for example, to stabilize desirable pe-
riodic behaviors in models of cardiac activity54. Conversely, techniques have also been developed
to destroy undesirable attractors by using an appropriate modulation of the system parameters55, 56.
Here, however, we do not seek to create or annihilate a stable state, but rather to bring the system to
an existing state that is already stable. Moreover, we seek to do this using one (or few) constrained
finite-size perturbations to the system state (rather than the dynamical system itself), and these
perturbations are forecast-based rather than feedback-based.

More similar to the sense of “control” that we consider here is the method of targeting57,
which can be used to facilitate the approach to a desired orbit. But like control of chaos, this
method generally applies when one wishes to move within the same ergodic component rather
than to move between different basins of attraction as we do here. And although a few methods
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have been developed to accomplish such transitions in multiple-attractor systems, they generally
require prior knowledge about features of the network state space either directly58 or indirectly via
auxiliary techniques such as Lyapunov functions59. This unfortunately limits their applicability to
low-dimensional systems and special cases for which such information is available. Indeed, the
central challenge that our approach seeks to overcome is the identification of control interventions
without reliance on details of global properties of the state space of the network in question.

A closer precedent to our work is ref. 12, where examples of compensatory perturbations
were provided for food-web networks. They were identified, however, by seeking to make the
current state of the system similar to a desired state. Such heuristics do not directly account for
the subsequent time evolution of the perturbed orbit (i.e., the control perturbation is not forecast
based) and they do not take systematic advantage of the critical role of basins of attraction, which,
as demonstrated here, allow control even when the target itself is not directly accessible. It should
also be noted that while our approach makes use of constrained optimization60, the question at
hand cannot be formulated as a simple optimization problem in terms of an aggregated objective
function, such as the number of active nodes. Maximizing this number by ordinary means can lead
to local minima or transient solutions that then fall back to asymptotic states with a larger number
of inactive nodes. The identification of stable states that enjoy the desired properties is thus an
important step in our formulation of the problem.

None of this is to suggest that the other methodologies discussed in this section are in any
way deficient. As we have noted, they simply address different problems from the one considered
here. Our formulation of the control problem can nonetheless benefit from existing techniques.
Once a compensatory perturbation has been found, existing control and optimization methods can
be used to modify this solution so as to optimize specific properties. For example, it might be
of interest to identify a solution that, among all eligible ones, brings the system to the target the
fastest. Incidentally, for lying further inside the target basin of attraction, such solutions have
the remarkable property of being resilient against noise and parameter uncertainty (see Effects of

stochasticity and Effects of parameter uncertainty below, Supplementary Figs. S1-S3). These pos-
sibilities underscore the robustness and versatility of our core approach. We emphasize, however,
that alternative compensatory perturbations can only be found with existing methods once at least
one eligible state inside the target basin has already been identified.

Effects of stochasticity. In our formulation of the network control problem and our procedure for
identifying compensatory perturbations, we have assumed the network dynamics is deterministic.
In real systems, however, there will often be noise in the dynamics. This raises the question of
whether our approach can be used to effectively control systems with a stochastic component. To
address this question, we revisit here the compensatory perturbations predicted with our method on
deterministic models, and test their effectiveness in a noisy version of the same system. We do this
for i) the mechanical example system presented in Supplementary Figure S4, and ii) the genetic
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network model with the initial/target states considered for Supplementary Figure S7. To model the
effects of stochasticity, we include an additive noise term in the dynamics of each state variable,
yielding the stochastic differential equation dx/dt = F(x)+ξ(t) for the new dynamics. Following
the notation in the main text, F is the n-dimensional deterministic dynamics, and ξ(t) is a vector
of n independent Gaussian white noise processes, each with mean 0 and r.m.s. amplitude s (which
quantifies the strength of the noise). Starting from a state x�

0 reached by a putative compensatory
perturbation, we generate many independent realizations of the noisy dynamics using a stochastic
Runge-Kutta scheme 61 to determine the probability that the noisy system reaches the target.

Before we proceed with a numerical experiment, we must appropriately define the notions of
“stability” and “attractors” in the presence of stochasticity, since with the addition of noise fixed
points are no longer strictly fixed. We consider a noisy orbit to reach the target if, after the usual
integration time limit τ used to test convergence to the target in the deterministic case (Supple-
mentary Methods), the mean position �x(t)� over an additional 1, 000 time units falls within a ball
of radius r around the target. We then consider noise strengths s up to a maximum smax, where
the threshold smax is defined such that at this noise level the standard deviation of the noisy orbit
around the target in any direction is at most r. Rigorously, we consider the stochastic dynamics
near the target state x∗, given by dx/dt = A ·x+s ξ(t), where A = DxF|x∗ is the Jacobian matrix
of F evaluated at the target state. Over long times, the maximum expected variance of this process
along any coordinate direction is ∼ s2/(2|λmin|), where s is the noise strength as defined above and
λmin is the real part of the eigenvalue of A with smallest real part magnitude. Thus, our criterion
for the noise strength smax that defines a fuzzy “ball of stability” of radius r around the target is
smax =

�
2r|λmin|. We use r = 0.1 for the systems in this section, which yields smax ≈ 0.02 and

smax ≈ 0.03 for the two-dimensional mechanical system and random genetic network systems,
respectively.

Supplementary Figure S1a-b illustrates the effect of noise for the compensatory perturba-
tions presented in Supplementary Figure S4a-b, respectively. Although the concept of a “basin of
attraction” is not absolute in the presence of noise, it is instructive to interpret the effects of noise
in terms of how it might “kick” the orbit between the deterministically-defined basins—regions
where the mean dynamics tends toward one attractor or the other. Indeed, because our algorithm
declares success after finding a point x�

0 just inside the target’s basin of attraction, it is possible
for the noisy trajectory to wander back across the boundary into the basin of the other attractor
(red curves). But there is nothing in our formulation of the control problem that dictates we must
perturb the system to any particular point x�

0; in general, there will exist other eligible states fur-

ther inside the target’s basin of attraction. By instead choosing one of those points, x��
0, as the

endpoint of our compensatory perturbation, the resulting orbit is far more likely to stay within the
deterministic target basin and as a result, far more likely to reach the target (grey curves).

Systematically, we choose the modified perturbed state x��
0 by starting from x��

0 = x�
0 and

minimizing the time T (x��
0) it takes the deterministic orbit resulting from x��

0 to reach a neighbor-
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hood of the target, namely, the same criterion used for attraction in the main text. Any such state
x��
0 must also comply with the given constraints on the eligible compensatory perturbations defined

by g(x0,x��
0) and h(x0,x��

0). This is done according to the nonlinear programming problem

minx��
0

T (x��
0)

s.t. g(x0,x
��
0) ≤ 0 (S6)

h(x0,x
��
0) = 0.

This problem can be solved by existing methods, and we implement it using Sequential Quadratic
Programming (Methods) immediately after the application of our control procedure that identifies
x�
0. Since this problem is a single optimization of a continuous and well-defined objective function,

this additional step is not costly. But note that solving the problem given by equation (S6) in such
a straightforward way is possible only because we have solution x�

0 that belongs to the basin of the
target and hence reaches the vicinity of the target in finite time.

Supplementary Figure S2a-b is a numerical demonstration of the effectiveness of the above
procedure, for the respective control scenarios represented by the initial/target state combinations
in Supplementary Figure S4a-b. As the strength of the noise term is increased, the success rate
of the original compensatory perturbations in both scenarios quickly drops to ≈ 50-60% (red).
As shown in Supplementary Figure S1, this can be attributed to the initial state’s proximity to the
boundary between the basins of xA and xB, which allows noise to knock the orbit back and forth
between the attraction basins. (Because the state x�

0 is slightly inside the target basin, this pro-
cess is biased, yielding a success rate above 50%). Nevertheless, the slight modification described
above yields initial conditions x��

0 that are significantly more likely to reach their respective tar-
gets at all noise levels (grey), with success rates of ≈ 70% (Supplementary Fig. S2a) and ≈ 90%

(Supplementary Fig. S2b) at the maximum noise strength. This is even more pronounced in the
network case (Supplementary Fig. S2c-d), where the effectiveness of the original compensatory
perturbations degrades quickly with increasing noise, particularly in larger networks. This precip-
itous drop in the success rate is a consequence of the large number of attractors (3N ) in this model,
which makes the effect of noise near the corresponding basin boundaries analogous to flipping a
many-sided coin to determine the ultimate fate of the network. These seemingly prohibitive odds
highlight the resilience offered by our formulation of the network control problem. By moving the
system further inside the desired basin, namely to x��

0, the modified interventions ensure that the
system will reach the target in nearly 100% of cases up to near the maximum noise strength, even
when the network size is increased.

Effects of parameter uncertainty. To formalize our approach in terms of the system’s state space,
we have assumed a model describing the dynamics of the system under study. Such a model usually
contains a (potentially large) number of parameters, and in practice the values of these parameters
may not be known precisely. A potential problem confronting our approach is thus that, when
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predicted using an imperfect model, a compensatory perturbation may place the real system in a
different basin of attraction than the one intended.

To address this possibility, we performed the following analysis. We consider the genetic
network model as used in Supplementary Figure S7, with weak coupling and the respective initial
and target states taken to be �x0 = �xA and �x∗ = �xB. For all nodes, we use the nominal values of the
parameters a1,2, b1,2, k1,2, f1,2, S, and m presented in the main text. Given a network with these
parameters, we predict two interventions: the original compensatory perturbation x0 → x�

0 found
by our method, and a modified perturbation x0 → x��

0 given as a solution to the problem described
by equation (S6); like in our study of the effects of stochasticity above, x��

0 is by design further
inside the predicted target basin. Now, suppose that the nominal parameter values do not accurately
represent the real system being modeled, and that the actual parameters lie somewhere in a window
of uncertainty about their nominal values, which we take to be ±5% in our numerical experiments.
Furthermore, suppose each of the six aforementioned parameters is allowed to vary in this way
independently for each node, meaning that the coupled subsystems are no longer identical. We then
test whether the predicted perturbations still drive the system to the target when the parameters have
been altered to the actual values. We calculate the success rate of each perturbation across a number
of these alternate parameter sets, chosen randomly within the range defined above. Supplementary
Figure S3a-b shows the results for networks of sizes 10 and 20, respectively. Although the original
perturbation often fails to bring the system to the target when the actual parameters differ from
their nominal values (red bars), the modified perturbations succeed nearly 100% of the time (grey
bars), despite having been predicted based on a model that is ostensibly “wrong”.

Note that a change in the system parameters usually induces a change in the system’s state
space as well, including the location, stability, and very existence of the fixed points. Thus, in all
networks considered above, the target state is displaced from its location in the imperfect model.
We find the appropriate target state based on Newton’s method applied to the dynamics of the exact
model, starting from the target state determined in the imperfect model as an initial guess. Any
parameter assignment for which this procedure does not yield a stable fixed point in the positive
orthant for the new target is rejected. This is a minor restriction, especially in light of the fact that
most models are construed to faithfully reproduce the equilibria of interest. Supplementary Figure
S3c-d shows the distribution of the amount the target moves for the eligible parameter choices
within the uncertainty window we consider.

Here, as for the effect of noise considered above, we have shown that there is a simple, com-
putationally inexpensive way to make the approach resilient against imperfections in the modeling.
Both problems are addressed by a slight adjustment to our basic method, namely, moving the sys-
tem further inside the predicted target basin by systematically minimizing the time taken to reach
the target state. We emphasize that this is possible because our formulation of the network control
problem is based on taking advantage of extended features of the state space, such as basins of
attraction. In this way, the challenges posed by stochasticity and parameter uncertainty highlight
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robustness as a fundamental strength of our approach.
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