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Mathematical models of motility are often based on
random-walk descriptions of discrete individuals that
can move according to certain rules. It is usually the
case that large masses concentrated in small regions
of space have a great impact on collective movement
of the group. For this reason, many models in math-
ematical biology have incorporated crowding effects
and managed to understand their implications.

Here, we build on a previously developed frame-
work for random walks on networks [1, 2] to show
that in the continuum limit, the underlying stochas-
tic process can be identified with a diffusion partial
differential equation. The diffusion coefficient of the
emerging equation is in general density-dependent,
and can be directly related to the transition proba-
bilities of the random walk.

In particular, the coarse-grained density of random
walkers ρ is shown to satisfy the nonlinear diffusion
equation

∂tρ = ∇ · (h(ρ)∇ρ) , (1)

where the diffusion coefficient h(ρ) is directly related
to the transition probabilities of the microscopic ran-
dom walk. With this we can recover many well-known
models in mathematical biology.

Moreover, we can analytically characterize the sta-
tionary distribution and the relaxation time of the
stochastic process on networks, which as usual, is
linked to network structure, but also to the diffu-
sion coefficient in Eq. (1). The employed argument
can be generalised for modular networks, where one
expects timescale separation. Here, we find that the
nonlinear nature of the random walk also affects the
different timescales of the process, as shown in Fig.
1.

Finally, these findings are applied to an analogue
of a Fisher-KPP equation on networks. In the linear
diffusion case, two regimes are observed depending on
the timescales of diffusion and proliferation. We show
that when diffusion is density-dependent, the same
two regimes can be observed, although with impor-
tant qualitative differences with respect to the linear
diffusion setting.

This work is further developed in Ref. [3].
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Fig. 1: Nonlinear diffusion on modular networks.
Numerical simulations of dρ/dt = −Lρm on
the shown graph. Dashed lines represent the
timescales that we calculate analytically.
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