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Spectral methods offer a tractable, global framework for clus-
tering via eigenvector computations. Graph data—in which
entities interact in pairs—are easily represented by matrices
and therefore amenable to spectral clustering. Hypergraph
data—in which entities interact in sets of arbitrary sizes—poses
challenges for matrix representations and therefore for spec-
tral methods. These challenges are especially pronounced in
nonuniform hypergraphs, which contain edges of multiple sizes
simultaneously. Many data sets of interest are nonuniform, and
the development of performant spectral methods for such data
sets is therefore of considerable interest.

We propose spectral clustering techniques for nonuniform
hypergraphs based on the hypergraph nonbacktracking oper-
ator of Storm [2006]. We prove an Ihara-Bass theorem for
this operator, extending results for the uniform case by An-
gelini et al. [2015]. We show through analytic calculations and
computational experiments, however, that the eigenstructure of
this operator makes it of limited use for clustering nonuniform
hypergraphs generated from stochastic blockmodels. This is
especially true when edges of different sizes carry differing
information about the latent cluster structure.

We therefore propose an alternating algorithm—
Nonbacktracking Belief-Propagation Spectral Clustering, or
NBPSC—using a spectral subroutine derived by linearizing
belief-propagation. We offer proofs supporting NBPSC that
both formalize and extend previous arguments by Angelini
et al. [2015] and Krzakala et al. [2013]. Analyzing NBPSC, we
prove several results about the eigenstructure of the linearized
belief-propagation operator, including both an in-expectation
description of the leading eigenpairs and a reduction formula
that allows these eigenpairs to be computed from a simpler
matrix. We pose conjectures about fundamental detectability
limitations of both spectral methods and more general methods
in recovery problems for hypergraph stochastic blockmodels.
These conjectures extend recently proven detectability
thresholds for graph stochastic blockmodels [Mossel et al.,
2018, Massoulié, 2014]. Experiments on synthetic data
support our conjectures (see Fig. 1). We then study several
empirical hypergraph data sets, including school contact
networks and co-tagging networks of mathematical concepts
on StackExchange. We find favorable performance of NBPSC
when compared to graph-based nonbacktracking spectral

Figure 1: Adjusted Rand Index (ARI) of output clustering from
NBPSC in a series of experiments on synthetic data generated
from a blockmodel containing hyperedges of size 2 and 3. The
white ellipse gives our conjectured detectability threshold.

methods with clique-expansions. Our results underscore
the distinctive challenges and benefits of explicit, dedicated
hypergraph methods for clustering problems.
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L. Massoulié. Community detection thresholds and the weak Ramanujan
property. In Proceedings of the Forty-Sixth Annual ACM Symposium on
Theory of Computing, pages 694–703, 2014.

E. Mossel, J. Neeman, and A. Sly. A proof of the block model threshold
conjecture. Combinatorica. An International Journal on Combinatorics and
the Theory of Computing, 38(3):665–708, 2018.

C. K. Storm. The Zeta Function of a Hypergraph. The Electronic Journal of
Combinatorics, 13(1):R84, Oct. 2006. ISSN 1077-8926. doi: 10.37236/
1110.

1


