
Parameterized Complexity of Streaming

Diameter and Connectivity Problems
Jelle J. Oostveen Erik Jan van Leeuwen

Dept. Information and Computing Sciences, Utrecht University, The Netherlands.
{j.j.oostveen | e.j.vanleeuwen}@uu.nl

A full version of this work is on the arXiv. An extended abstract is under submission.

The first author is partially supported by the NWO grant OCENW.KLEIN.114 (PACAN).

Introduction. In the analysis of a network,
its diameter and whether or not it is connected
are important measures. Algorithms to com-
pute the diameter or decide connectivity of a
network often rely on keeping the entire net-
work in (random access) memory. However,
very large networks might not fit in memory.
Graph streaming is a paradigm where the net-
work is inspected through a so-called stream, in
which its edges appear one by one, and only lim-
ited memory is available [Henzinger et al. ’98].
To compensate for the limited memory, multi-
ple passes may be made over the stream and
computation time is unlimited. The question is
to determine the computational complexity of
(graph) problems in this model, taking into ac-
count trade-offs between the amount of memory
and the number of passes.

An ideal would be to use O(log n) bits of
memory (e.g., a constant number of pointers or
counters) in a single pass on n-vertex graphs.
Unfortunately, any p-pass algorithm for Con-
nectivity needs Ω(n/p) bits of memory, un-
conditionally [Henzinger et al. ’98]. Single
pass algorithms for Connectivity or Diame-
ter need Ω(n log n) bits on sparse graphs [Sun
Woodruff ’15]. Naive streaming algorithms for
Connectivity or Diameter store the entire
graph, using O(m log n) bits and a single pass.
For Connectivity this can be improved to a 1-
pass, O(n log n) bits algorithm [McGregor ’14].
This is far from ideal.

We ask what structure a graph must have in
order to improve on these naive algorithms and
to circumvent the complexity barriers formed by
the lower bounds. We use parameterized com-
plexity to address this question.

Results. As our main result, we show that if
a graph has vertex cover number k (i.e., it can
be made edgeless by deleting k vertices), then
Diameter and Connectivity can be solved

using O(2kk) passes, O(k log n) bits of memory
or one pass, O(2k+k log n) bits of memory. This
algorithm assumes the stream is given in the AL
model : edges incident on the same vertex appear
consecutively in the stream and all edges appear
twice in a single pass (once for each endpoint).
Underlying these algorithms is a method to ex-
ecute a breadth-first search in O(k) passes and
O(k log n) bits of memory. Note that for con-
stant values of k, we achieve the desired O(log n)
bits of memory.

We also show (unconditional) hardness re-
sults that highlight two important aspects of
our algorithm. First, the assumption of the AL
model is necessary. In the slightly weaker VA
model, where edges incident on the same vertex
still appear consecutively but only once (for the
second endpoint), we observe that any p-pass al-
gorithm needs Ω(n/p) bits of memory even when
the vertex cover number is 3 or 2 for Diameter
and Connectivity respectively.

Second, we need our choice of parameter.
For any graph H, an H-free modulator of a
graph G is a set X of vertices such that G−X
does not have any induced subgraph isomorphic
to H. For H = P2 (P2 is the path on two ver-
tices), the minimum size of an H-free modulator
is the aforementioned vertex cover number, for
which we achieve our positive result. For almost
any other choice of H, we prove that any p-pass
streaming algorithm for Diameter or Connec-
tivity needs Ω(n/p) bits in the AL model even
when a modulator of a fixed, constant size is
known. For example, for Diameter, we show
such hardness if the graph is a tree or if the
graph is two vertices away from being a path.

For some cases, we can also show one-pass,
Ω(n log n) bits of memory lower bounds. We
also prove a much stronger lower bound for Di-
ameter on bipartite graphs: any p-pass algo-
rithm needs Ω(n2/p) bits of memory.

https://arxiv.org/abs/2207.04872

