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study of complex networks
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Built upon the shoulders of graph theory, the field of com-
plex networks has become a central tool for understanding
complex systems. Represented as a graph, empirical sys-
tems across domains can thus be studied using the same con-
cepts and the same metrics. However, this simplicity is also
a major limitation since graph theory is defined for a binary
and symmetric description where the only relevant informa-
tion is whether a link exists or not between two vertices.
Despite the successful adaptation of graph theory to directed
graphs, its application to weighted networks has been rather
clumsy. Empirical relations are usually weighted and we
daily face the need to take arbitrary choices like, for ex-
ample, having to threshold the real data to obtain a binary
matrix on which, now yes, the graph tools can be applied.

Here, we propose a reformulation of graph theory from a
dynamical point of view that can help aleviate these lim-
itations, valid at least for the class of real networks that
accept flows. First, we show that classical graph metrics
are derived from a simple but common generative dynami-
cal model (a discrete cascade) governing how perturbations
propagate along the network. The Green’s function C(A, t)
of the adjacency matrix A for the discrete cascade repre-
sents the network response to unit external perturbations at
consecutive discrete times £. All the relevant information
needed to describe the network, and to define graph met-
rics, is unfolded via the generative dynamics from the adja-
ceny matrix A onto its Green’s function C(¢), see Fig. .
From this perspective, graph metrics are no longer regarded
as combinatorial attributes of a graph A, but they correspond
to spatio-temporal properties of the network’s response to
external perturbations.

Second, seen from this dynamical angle, we learn that the
difficulties of graph theory to deal with weighted networks
are the consequence of the constrains of its “hidden” dynam-
ical model, rather than a limitation imposed by the binary
representation. Therefore replacing the underlying discrete
cascade by other generative models (either discrete or con-
tinuous, conservative or non-conservative) network metrics
can be redefined from the corresponding Green’s function
C(t) of each model. For example, graph distance is typi-
cally evaluated as the minimal number of “hops” needed to
traverse between two nodes. But in the case of weighted net-
works “hops” is no longer a valid metric of distance. Instead,
from a dynamical point of view, the time that a perturbation
on node ¢ takes to significantly affect other vertices j can
be used to redefine their distance, as shown in Fig. |I[B An-
other limitation of graph theory is the difficulty for compar-
ing across networks. Under this framework, a simple renor-
malization of the connectivity matrices allows to align net-
works of same architecture but of different densities or sizes
as shown in Fig. [T[C.

In summary, we propose a dynamical formulation of
graph theory in which the underlying generative model is

explicit and tunable. This allows to define metrics in which
both directionality and link weights are natural — built-in —
aspects of the metrics. This flexibility provides the opor-
tunity to calibrate network analyses by choosing generative
models that are better suited for the specific system under
study; thus balancing between simplicity and interpretabil-
ity of results. A plethora of past efforts have employed dif-
ferent types of dynamics to study and characterise complex
networks, e.g., by navigating on them [1]], the propagation
of random walkers [2] or via routing models [3]. We envi-
sion that the perturbative formulation here proposed serves
to enclose all those efforts under a common umbrella.

A Dynamical re-formulation: model replacement
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Fig. 1. Graph metrics emerge from a common hidden gener-
ative model — a discrete and non-conservative cascade. The
powers of the adjacency matrix describe the network re-
sponse (effect between nodes) over time due to initial unit
perturbations, encoding all necessary information to charac-
terise the graph and define metrics. Replacing the generative
model allows to derive generalised graph metrics in which
directionality and link weights are naturally encompased.
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