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Mechanistic models with simple rules can yield com-
plex networks that capture salient characteristics of
real-world data, such as heavy-tailed degree distribu-
tions1 or the small-world effect2. However, fitting these
models to data is challenging because the order of addi-
tion of nodes is typically not known, rendering the like-
lihood intractable. Existing approaches compare sum-
mary statistics3, develop model-specific likelihood ap-
proximations4, or seek to make the likelihood tractable
by assuming the order is known5,6 or by inferring it7,8.

While the emergent global properties of these models
are complex, real-world networks likely arise from local
processes1 (imagine having to consider billions of people
to choose friends). We conjecture that all information
required for inference is localized in monotonic growth
models, i.e., models that add but do not remove nodes
or edges. We offer evidence in support of our conjec-
ture by applying neural posterior density estimators9

(NPDEs) to data simulated by four network models.

We grow an undirected graph by repeatedly applying
the same rule6. At each step t, we add a new node t
and connect it to the existing network by a set of edges
ϵt. The rule is fully specified by the conditional distri-
bution p (ϵt | Gt−1), where Gt is the graph at time t. It

comprises edges Et = E0∪
⋃t

t′=1 ϵt′ , where E0 is the ini-
tial edge set. Consider a restricted, localized model: We
sample seed nodes St independent of the graph struc-
ture and select neighbors for the new node t by ex-
ploring the neighborhoods of seeds. We say the rule is
k-localized if new edges ϵt only depend on the subgraphs

B
(k)
St

induced by the k-neighborhoods of seeds in Gt−1.

More formally, p (ϵt | Gt−1) = p
(
ϵt | B(k)

St
, St

)
, and the

likelihood is p (Et | E0) =
∏t

t′=1 p
(
ϵt′ | B(k)

St′
, St′

)
.

While we cannot evaluate the likelihood in gen-
eral, its structure is informative: Neighbors of node
t only depend on the k-neighborhoods of the neigh-
bors u < t it connects to or its own k-neighborhood
for nodes v > t that connect to it. All information
about the growth process is thus contained in the k+1-
neighborhood of each node (due to dependence on the
k-neighborhood of neighbors). We study four growing
network models experimentally: Random attachment
with Poisson-distributed number of stubs (0-localized),
random attachment with two stubs and probabilistic
one-step redirection1 (2-localized), and two protein in-
teraction models (duplication divergence with random
mutation10 (DMR; 1-localized) or complementation11

(DMC)). Despite their similarity, the latter has no lo-
calization guarantees because edges may be removed.
We use a gamma (2, 1) prior for the Poisson rate and
independent uniform priors for all other parameters.

As the likelihood remains intractable, we resort to
simulation-based inference. We train NPDEs f to ap-
proximate the posterior p (θ | G) by minimizing the
negative log probability loss −⟨log f (θ,G)⟩, where θ
are model parameters and ⟨·⟩ denotes the expectation
under the prior predictive distribution. Importantly,
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FIG. 1. The performance of neural posterior density esti-
mators using graph isomorphism networks (GINs) is con-
sistent with theoretical information localization. Each panel
shows the negative log probability loss for a specific model
as a function of GIN depth ℓ evaluated on a test set. Dot-
ted lines indicate the predicted depth required for inference
based on information localization.

we now have a theoretical foundation for the neural
architecture and employ graph isomorphism networks
(GINs)12. A GIN with ℓ layers yields node representa-
tions based on their ℓ-neighborhood. We use a vector
of ones as node features and obtain graph-level repre-
sentations η by mean pooling the concatenated hidden
representations of each layer. The final component of
the NPDE depends on the specific network model, and
we use a gamma distribution parameterized by dense
neural networks applied to η for the Poisson rate. For
all other parameters, we use beta distributions to ap-
proximate the posterior. Our conjecture that infor-
mation is localized is supported by the results shown
in Fig. 1: Performance improves with increasing GIN
depth ℓ but saturates when or before ℓ = k + 1. Even
the non-monotonic DMC model does not benefit from
deep GINs, suggesting that local features may be suffi-
cient for inference for a broader class of models.

We have not only offered theoretical arguments and
empirical evidence for information localization in mono-
tonic growth models but also presented NPDEs for
simulation-based inference when the likelihood of mech-
anistic network models is intractable. In our experi-
ments (results not shown), NPDEs have well-calibrat-
ed coverage and satisfy posterior predictive checks–even
for non-local statistics such as the spectral gap.
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