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The concept of percolation threshold has multiple applications in graph theory and network science. One

way of studying the percolation threshold is to use a “susceptibility function”, which is any function designed

to have a tall peak at the percolation threshold. One example is S(p) :=
⟨S2

p⟩−⟨Sp⟩2

⟨Sp⟩ , where Sp is the size of

the largest connected component in the network after a random fraction p of edges has been removed, and

the angle brackets denote average over random realizations. Usually, the function S(p) has a single peak

that coincides with the percolation threshold of the network.

Another way of estimating the percolation threshold of a network is to use the reciprocal of the leading

eigenvalue λ1 of the non-backtracking (NB) matrix (Karrer et al., PRL, 113(208702), 2014). The NB matrix

of a graph G is the zero-one matrix that indicates the possible steps taken by a random walker that does

not backtrack. This spectral estimate is known to be a lower bound to the true percolation threshold.

In (Pastor-Satorras & Castellano, Sci. Rep. 10.1, 2020), it was pointed out that sometimes the suscepti-

bility function S contains not one, but two peaks, and in this case, the estimate of 1/λ1 only estimates the

first peak and fails to estimate the second peak. It was also pointed out that this seems to happen when the

eigenvector corresponding to λ1 is localized, i.e., when there exists a small subgraph H whose nodes receive

most of the mass of the eigenvector, while nodes outside of H receive relatively negligible mass.

The open question remains of how to estimate the second peak of S(p) in the presence of eigenvector

localization. In this project, I show how to do this. First, I propose the hypothesis that the subgraph H

where the eigenvector is localized is percolating at a different rate than the rest of the graph. To test this

hypothesis, I propose a greedy algorithm to automatically find H, which is shown to be effective on different

real-world data sets (Fig.1a). Second, I show that the reciprocal of the leading eigenvalue of the complement

of H is a good estimate for the second peak of S(p), while the reciprocal of the leading eigenvalue of H is

a good estimate of the first peak, as usual (Fig.1b). This supports the hypothesis. Third, I show a growth

model that is able to generate susceptibility curves with two peaks after being executed on an existing

network (Fig.1c). This is derived from first principles and shown to be a mixture between preferential

attachment and copying strategies.

Finally, both the greedy algorithm and the growth process are based on the observation in (Torres et al.,

SIMODS, 3(2), 2021) that the higher the X-Degree centrality of a node, the higher its influence on λ1. The

X-Degree centrality is derived from a perturbation analysis of the NB matrix and is a quadratic aggregation

of a node’s neighbors’ degrees. Of note, X-Degree is purely a local and structural centrality measure, and it

is observed here to effectively manipulate a global, spectral phenomenon such as eigenvector localization.
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Figure 1. a) Removing nodes based on X-Degree reveals a sharp drop in λ1 in a collaboration network.
We choose H as the smallest subgraph such that removing any more nodes causes a drastic change in λ1.
b) The eigenvalues of H and its complement Ĥ, when taken separately, serve to estimate the two peaks in
the susceptibility function in the original network. c) The susceptibility curve of a random ER graph before
(left) and after (right) the growth process based on X-Degree has been applied.
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