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Abstract
Suppose that there is an unknown underlying graph G on a large vertex set, and we can test only a proportion

of the possible edges to check whether they are present in G. If G has high modularity, is the observed graph G′

likely to have high modularity? We see that this is indeed the case under a mild condition, in a natural model where
we test edges at random. We find that q∗(G′) ≥ q∗(G)− ε with probability at least 1− ε, as long as the expected
number edges in G′ is large enough. Similarly, q∗(G′) ≤ q∗(G) + ε with probability at least 1 − ε, under the
stronger condition that the expected average degree in G′ is large enough. Further, under this stronger condition,
finding a good partition for G′ helps us to find a good partition for G.

We then consider the vertex sampling model for partially observing the underlying graph: we find that for
dense underlying graphs we may estimate the modularity by sampling constantly many vertices and observing the
corresponding induced subgraph, but this does not hold for underlying graphs with a subquadratic number of edges.
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Figure 1: Simulation results. The dolphin social network [3] with 62 vertices and 159 edges was taken to be the underlying
graph G. It is known that q∗(G) = 0.529 to three decimal places [2]. In the left part of the figure each red point corresponds to
the estimated modularity q̃(Gp) of an instance of the sampled graph Gp, i.e. the random graph formed by taking each edge in G
to be present independently with probability p. For each edge probability p = 0.1, 0.2, . . . , 0.9, the graph Gp was sampled 50
times. For each sampled graph Gp we took the maximum modularity score of the partitions output by over 200 runs of both the
Louvain [1] and Leiden [4] algorithms. The noise in the x-axis is to allow one to see the points.
In the right part of the figure we examine, for each random instance of Gp, how well the modularity maximising partition of Gp

performs as a partition on the underlying graph G. In detail, for each sampled graph Gp we plot the score qÃ′(Gp)
(G), where

Ã(Gp) is the highest scoring partition on Gp found in 200 runs of Louvain and Leiden and Ã′(Gp) is the partition modified
according to the method in our result.

References
[1] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. Journal of Statistical

Mechanics: Theory and Experiment, 2008(10):P10008, 2008.
[2] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner. On modularity clustering. Knowledge and Data

Engineering, IEEE Transactions on, 20(2):172–188, 2008.
[3] D. Lusseau. The emergent properties of a dolphin social network. Proceedings of the Royal Society of London. Series B: Biological

Sciences, 270(suppl 2):S186–S188, 2003.
[4] V. A. Traag, L. Waltman, and N. J. Van Eck. From louvain to leiden: guaranteeing well-connected communities. Scientific reports,

9(1):1–12, 2019.

*Department of Statistics, University of Oxford. Email: cmcd@stats.ox.ac.uk
†Department of Mathematics, Uppsala University. Email: fiona.skerman@math.uu.se


