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1 Introduction

The interactions between objects of two different types
can be naturally encoded as a bipartite graph where nodes
correspond to objects and edges to the links between the
objects of different type. One can find examples of such
data in various fields, e.g., interactions between customers
and products in e-commerce, interactions between plants
and pollinators, investors and assets networks, judges vote
predictions and constraint satisfaction problems.
Clustering is one of the most important analysis tasks on

bipartite graphs aimed at gathering nodes that have simi-
lar connectivity profiles. To this end, several methods have
been proposed in the literature, e.g., convex optimization
approaches, spectral methods, modularity function maxi-
mization and variational approaches. The performance of
the algorithms are generally evaluated under the Bipartite
Stochastic Block Model (BiSBM), a variant of the Stochas-
tic Block Model (SBM), where the partitions of the rows
and the columns are decoupled. In particular, edges are
independent Bernoulli random variables with parameters
depending only on the communities of the nodes.
In the setting where the number of type II nodes (n2) is

of a different order than the number of type I nodes (n1),
classical methods can fail. In particular, when the bipar-
tite graph is very sparse, and assuming w.l.o.g n2 ≫ n1,
it becomes impossible to consistently estimate the latent
partition of the type II nodes, whereas it is still possible
to estimate the latent partition of the type I nodes.

Contributions. We extend the work of [4] that was
specialized to a symmetric BiSBM with two type I and
type II node communities to a general BiSBM by propos-
ing a new algorithm also based on the power method, but
which avoids estimating model parameters. We derive an
upper bound for the misclustering rate (i.e., the fraction
of misclassified nodes) and show that this rate is minimax
optimal (up to a constant factor) under the setting of [4].
The details of our work are in [1].

2 The Generalized Power Method (GPM)

Let A ∈ {0, 1}n1×n2 denote the adjacency matrix of the
observed bipartite graph with K (resp. L) row (resp. col-
umn) - clusters. Our aim is to cluster the rows of A. Let
us introduce B := H(AA⊤) where H(X) = X − diag(X).

Given an initial rough estimate Z
(0)
1 ∈ {0, 1}n1×K of the

row-clusters, we can iteratively refine the partition by re-
peating the following steps for 0 ≤ t ≤ T − 1

• Form W (t) = (Z
(t)
1 )⊤(D(t))−1 where D(t) =

diag((Z
(t)
1 )⊤1n1

), and 1n1
is the all ones vector.

∗Emails: guillaume.braun@inria.fr, hemant.tyagi@inria.fr

• Update Z
(t+1)
1 := P(BW (t)) where P projects on to

the extremal points of the unit simplex of RK .

3 Main results

One can show the following consistency guarantee for GPM.

Theorem 1 (Informal). Assume that A ∼ BiSBM with a
latent row partition Z1 ∈ {0, 1}n1×K , and a edge-sparsity
level pmax such that n1n2p

2
max ≳ log n1. Then, if GPM is

initialized with a partition estimate Z
(0)
1 that recovers a

large enough portion of the clusters, the misclutering rate

r of the output Z
(T )
1 of GPM satisfies w.h.p. for T ≳ log n1

r(Z
(T )
1 , Z1) ≤ exp(−Ω(n1n2p

2
max)).

To obtain an initial estimate Z
(0)
1 that satisfies the the-

orem requirements, one can use a spectral method applied
on B as shown in [1].
Next, we show that the rate of convergence of Theorem

1 is optimal when K = L = 2.

Theorem 2 (Informal). Suppose that A ∼ BiSBM with
K = L = 2, n2 ≫ n1 log n1, n1n2p

2
max → ∞ and

n1n2p
2
max = O(log n1). Then there exists a constant

c1 > 0 such that

inf
ẑ

sup
θ∈Θ

E(r(ẑ, z)) ≥ exp(−c1n1n2p
2
max)

where the infimum is taken over all measurable functions ẑ
of A, and Θ is a set of admissible parameters correspond-
ing to approximately equal sized clusters.

The proof of Theorem 1 relies on the framework devel-
oped by [2]. The proof of Theorem 2 is based on a Bayesian
argument from [3] to reduce the problem to a two hypoth-
esis testing problem. The error associated with the result-
ing complex two hypothesis testing problem is then lower
bounded by the error associated with a simpler test.
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