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Despite the vast literature on network dynamics, we still lack basic insights into dynamics on
higher-order structures (e.g., edges, triangles, and more generally, k-dimensional “simplices”) and
how they are influenced through higher-order interactions. A prime example lies in neuroscience
where groups of neurons (not individual ones) may provide the building blocks for neurocom-
putation. Here, we study consensus dynamics on edges in simplicial complexes using a type of
Laplacian matrix called a Hodge Laplacian, which we generalize to allow higher- and lower-order
interactions to have different strengths. Using techniques from algebraic topology, we study how
collective dynamics converge to a low-dimensional subspace that corresponds to the homology
space of the simplicial complex. We use the Hodge decomposition to show that higher- and lower-
order interactions can be optimally balanced to maximally accelerate convergence, and that this
optimum coincides with a balancing of dynamics on the curl and gradient subspaces. We addition-
ally explore the effects of network topology, finding that consensus over edges is accelerated when
2-simplices are well dispersed, as opposed to clustered together. [1]
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Figure 1: Balancing invariant subspace
dynamics maximally accelerates conver-
gence. Working with a specific simplicial
complex, plot (A) shows the convergence
rate of the total value as well as the gradient
and curl subspaces in Generalized Hodge
Laplacian-1 consensus simulations for dif-
ferent values of the balancing parameter, δ.
The orange and purple lines show the ex-
pected values for these convergence rates
calculated using the eigenvalues of the com-
ponent matrices of the generalized Hodge
Laplacian corresponding to the gradient and
curl subspaces. For this simplicial complex,
the balancing parameter that optimizes con-
vergence rate is δ∗ ≈ .08. In (B), we plot
the log normed error, log (||x(t)− x(h)||2),
again for the total as well as the gradient and
curl subspaces for a few select values of δ.
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