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Abstract

Over the last decades chimera states have attracted considerable attention as unexpected symmetry-broken
spatio-temporal patterns exhibiting simultaneous synchronous and incoherent behaviour under particular
conditions. Although relevant results of such unforeseen states in different physical and topological config-
urations have been obtained, there remain several structures and mechanisms yet to be unveiled. In this
presentation, I will address the case of coevolutive coupling occurring in a multilayer network composed by
two populations of different kinds of heterogeneous phase oscillators via a mean-field approach. Moreover, a
time-scale separation between the dynamics of the elements and the adaptive coupling strength connecting
them allows the employment of Geometric Singular Perturbation Theory (GSPT) results in order to obtain
a better insight on the dynamics of the system from a fast-slow perspective. At first, I will propose a mecha-
nism for the emergence of stable chimera states through the inclusion of a coevolutive intercoupling strength
connecting the populations. In this setting, I will provide with neccesary conditions for the critical manifold
to be normally hyperbolic along the entire domain of interest. Moreover, I will discuss the necessary condi-
tions for the critical manifold to be strictly attractive, which will lead to the generation of stable chimera
states dependent only on the slow flow dynamics employed. Thereafter, I will compare the aforementioned
results with the effects of incorporating a coevolutive intracoupling strength over one of the populations. For
this specific scenario, I will provide with the necessary conditions for the critical manifold to exists and be
composed by connected sets throughout the domain of interest, as well as obtain neccesary conditions for this
manifold to be normally hyperbolic and strictly attractive. Finally, the possibility of producing breathing
chimera states by specific coevolutionary coupling dynamics will be discussed and numerical simulations
supporting our findings will be presented.
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Figure 1: Comparison between mean-field reduction (left), and network system (center) with the same
macroscopic quantities. For the mean-field approach, the black and blue lines represent the critical manifold
branches while the green line describes the set of equilibrium points for the slow flow. Oscillator phases for
the network system (right) at initial (¢ = 0 [s]) and final time (¢ = 1000 [s]) demonstrating the emergence of
stable chimera states. Black and blue dots represent the nodes of the first and second population, respectively.



