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1 Introduction

In many applications, such as sport tournaments or rec-
ommendation systems, we are given outcomes of pairwise
comparisons between n items. The goal is to then infer the
latent strength of each item and/or their ranking. This has
been thorougly studied both in theory and in practice for
a single comparison graph G. However, many applications
(e.g., sports tournaments) involve time-evolving data, for
which only limited theoretical results exist, under local
(Lipschitz-type) smoothness assumptions [2, 3]. We add
to this recent line of work by considering a more general
setting with a global smoothness assumption [1].

2 Problem setup

The data consist of pairwise comparisons on a set of items
[n] = {1, 2, . . . , n} at different times t on a uniform grid
T =

{
k
T : k = 0, . . . , T

}
⊂ [0, 1]. At each t ∈ T , we denote

the comparison graph Gt = ([n], Et) where Et is the set of
undirected edges. Let z∗t = (z∗t,1, . . . , z

∗
t,n)

⊤ ∈ Rn, where
z∗t,i denotes the latent strength of item i at time t. For each
t ∈ T and {i, j} ∈ Et, we observe the noisy measurement

yij(t) = z∗t,i − z∗t,j + ϵij(t),

where ϵij(t) are i.i.d. centered subgaussian random vari-
ables. This corresponds to the Translation Synchroniza-
tion model at each time t ∈ T . It can also be linked to the
classic BTL model, see for e.g., [1]. For meaningful esti-
mation of z∗t , we assume z∗t is centered (i.e.,

∑n
i=1 z

∗
t,i = 0)

and moreover evolves smoothly with t.

Assumption 1 (Global ℓ2-smoothness). Let C ∈ Rn×(n2)

be the edge incidence matrix of the complete graph. We
assume that

T−1∑
k=0

∥∥C⊤(z∗k − z∗k+1)
∥∥2
2
≤ ST . (2.1)

Denoting z∗ = (z∗⊤0 · · · z∗⊤T )⊤, we can write (2.1) as

∥Ez∗∥2 ≤ ST , where E is a suitable smoothness opera-
tor [1], indicating that z∗ lies close to the null space of E.
We propose the following estimators for estimating z∗t .

1. Smoothness-penalized least-squares.

ẑ = argmin
z0,...,zT∈Rn

z⊤k 1n=0

∑
t∈T

∑
(i,j)∈ #»Et

(yij(t)− (zt,i − zt,j))
2 + λ ∥Ez∥22 ,

where ẑ =
(
ẑ⊤0 . . . ẑ⊤T

)⊤ ∈ Rn(T+1).
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2. Projection method. For each t ∈ T , let žt ∈ Rn be
the least-squares solution of

yij(t) = zt,i − zt,j ∀ {i, j} ∈ Et

and denote ž =
(
ž⊤0 . . . ž⊤T

)⊤
. For τ > 0, let Pτ

be the projection matrix on the eigenspace of E⊤E
corresponding to eigenvalues smaller than τ . Then
define

ẑ =
(
ẑ⊤0 . . . ẑ⊤T

)⊤
= Pτ ž ∈ Rn(T+1).

3 Main results

Our main results are summarized below, see [1] for details.

Theorem A (Penalized least-squares). Suppose that Gt

is connected for each t ∈ T and λ = ( T
ST

)2/5, then it holds
w.h.p.

∥ẑ − z∗∥22 = O(T 4/5S
1/5
T ).

We show in [1] that the bound in Theorem A can be

improved to O(T 2/3S
1/3
T ) under additional technical as-

sumptions on the graphs (Gt)t∈T .

Theorem B (Projection method). Suppose that Gt is
connected for each t ∈ T and τ = (ST

T )2/3, then it holds
w.h.p.

∥ẑ − z∗∥22 = O(T 2/3S
1/3
T ).

Note that if ST = o(T ), then both theorems imply that
the mean squared error 1

T+1∥ẑ − z∗∥22 = o(1) as T → ∞.
Moreover, if the strengths are Lipschitz functions of time,
then ST = O(1/T ), and Theorem B leads to the opti-
mal empirical L2-norm rate for the estimation of Lipschitz
functions on a uniform grid [1, Remark 4]. We also as-
sess the performance of our estimators via experiments on
synthetic data, and show that they acheive similar results
for different choices of ST . They also display comparable
performance to existing estimators in the Dynamic BTL
setting [2, 3]. We finally test our estimators on the Netflix
Prize and the English Premier League datasets, and show
that the dynamic setup leads to an improvement in the
performance compared to the static case.
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