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data is the trade-off between computational feasibility and

accuracy. Motivated by process motifs for lagged covari-

ance in an autoregressive model with slow mean-reversion,
we propose to infer networks of causal relations via pair-

wise edge measure (PEMs) that one can easily compute
from lagged correlation matrices. We introduce a PEM
with a correction for confounding factors (LCFC) and a
PEM with a correction for reverse causation (LCRC).
We derive the respective correction terms from the con-
tributions of process motifs (see Figurel (a)) to a stochastic

difference model
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with time step At, coupling strength €, lag-k adjacency
matrix A®*) noise strength o and Gaussian white noise
w;. This model interpolates between the discrete-time
vector autoregression and the continuous-time Ornstein—
Uhlenbeck process.
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To demonstrate the performance of our PEMs, we con-

sider linear stochastic processes on random networks and T . T —— T
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show that our proposed PEMs can infer networks accurate o tr e, 1072 ey [107] cag e 1071

and efficiently. Specifically, our approach achieves higher
accuracy than lag-1 correlation (LC), inverse covariance
estimation (OUI), and a higher than or similar accuracy
as results from Granger causality (GC), transfer entropy

accuracy O

(TE), and convergent crossmapping (CM), but with much

shorter computation time than any of these methods (see . R
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Figurel (b—c)).

The theoretical framework underpinning our PEMs

T T T T T

0.5 1.0 025 050 0.75
) . ) time step At coupling strength e
makes it possible to explain why some structural prop-
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erties of networks (e.g. large network size and a large 1.007()

mean local anti-clustering coefficient!) pose challenges for
PEM-based network inference (see Figure 1 (d)). 0.99

Figure 1: Process motif contributions and inference " 0.98 ~

accuracy.. (a) Three process motifs and their contri-
butions to an ideal PEM, lag-1 covariance ngl-), and our 0.97 4
proposed PEMs, f(LCFC) and fILCRC). (h¢) inference ac-

curacy with varying parameters of the stochastic-difference 0.96 4
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model; (d) inference accuracy with varying maximum de-

gree K of a shooting-star graph with n nodes. T T T T T
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'We define the local anti-clustering coefficient of a node i with K/n
degree k; and local clustering coefficient ¢; as ¢; := k; (1 — ¢;)




