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A major challenge for causal inference from time-series

data is the trade-off between computational feasibility and

accuracy. Motivated by process motifs for lagged covari-

ance in an autoregressive model with slow mean-reversion,

we propose to infer networks of causal relations via pair-

wise edge measure (PEMs) that one can easily compute

from lagged correlation matrices. We introduce a PEM

with a correction for confounding factors (LCFC) and a

PEM with a correction for reverse causation (LCRC).

We derive the respective correction terms from the con-

tributions of process motifs (see Figure1 (a)) to a stochastic

difference model

xt = (1−∆t)xt−∆t +∆t

p∑
k=1

ϵA(k)xt−k∆t + σ∆wt , (1)

with time step ∆t, coupling strength ϵ, lag-k adjacency

matrix A(k), noise strength σ and Gaussian white noise

wt. This model interpolates between the discrete-time

vector autoregression and the continuous-time Ornstein–

Uhlenbeck process.

To demonstrate the performance of our PEMs, we con-

sider linear stochastic processes on random networks and

show that our proposed PEMs can infer networks accurate

and efficiently. Specifically, our approach achieves higher

accuracy than lag-1 correlation (LC), inverse covariance

estimation (OUI), and a higher than or similar accuracy

as results from Granger causality (GC), transfer entropy

(TE), and convergent crossmapping (CM), but with much

shorter computation time than any of these methods (see

Figure1 (b–c)).

The theoretical framework underpinning our PEMs

makes it possible to explain why some structural prop-

erties of networks (e.g. large network size and a large

mean local anti-clustering coefficient1) pose challenges for

PEM-based network inference (see Figure 1 (d)).

Figure 1: Process motif contributions and inference

accuracy.. (a) Three process motifs and their contri-

butions to an ideal PEM, lag-1 covariance S
(1)
ij , and our

proposed PEMs, f (LCFC) and f (LCRC); (b–c) inference ac-

curacy with varying parameters of the stochastic-difference

model; (d) inference accuracy with varying maximum de-

gree K of a shooting-star graph with n nodes.

1We define the local anti-clustering coefficient of a node i with

degree ki and local clustering coefficient ci as ci := ki(1− ci)
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