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Cascading failures, a ubiquitous phenomenon in a variety of natural, social and technical 
systems, have been attracting the attention of researchers from social science, engineering, 
epidemiology, ecology and information science, to name a few. The prevalent methodologies, 
as we collectively call the “forward approach” in studying cascading failures, typically presume 
a network topology and a specific failure propagation mechanism (SFPM), and seek to 
understand how they (non-linearly) affect the cascading failure outcomes such as the size of 
the largest connected cluster (a.k.a. giant component). Though granting critical insights into 
the linkage between (static) system properties and system behaviors, the forward approach 
faces three challenges: firstly, real-world network topologies are not always available, which in 
some cases inhibits reaching reasonable assumptions on network topologies for the forward 
approach; secondly, system dynamics are only tractable at equilibrium conditions, making it 
intricate to learn cascading failure processes where systems are constantly changing (i.e. non-
equilibrium) through the forward approach; and thirdly, the SFPMs may vary across different 
systems, and SFPM-specific models and findings in the forward approach have limited 
generalizability in an interdisciplinary context. For example, when interdependencies (which 
can be viewed as an SFPM) are present in a system, the cascading failure process and 
outcomes are dramatically altered compared to when no interdependencies are involved. 
        To address these challenges, we propose a modeling framework to infer and reconstruct 
the cascading failure process, given only the observed cascading failure outcomes, primarily 
the time of failure for each node in the network(s). A MLE-based formulation is devised to 
mathematically describe how four generalized failure propagation mechanisms (GFPMs) – 
external, temporal, spatial and functional – drive the progress of cascading failures and give 
rise to the observed failure outcomes. Maximum likelihood estimation (MLE) is employed to 
estimate the model parameters associated with the four GFPMs. This modeling framework, as 
we call the “backward approach”, is tested and validated with three simulation studies: one for 
cascading failures in interdependent power and transportation networks, one for influenza 
epidemics, and one test case for congestion cascade in a benchmark transportation network.  
        Our simulation results demonstrate remarkable capability of the backward approach in 
learning the dynamics of GFPMs underlying the observed cascading failure outcomes, and 
accurately reconstructing the cascading failure process in all three simulation studies. The 
simulation of influenza epidemics and congestion cascade also reveals the versatility and 
robustness of the model. In the influenza epidemic case where SFPMs (such as human 
mobility and population density) are known, these SFPMs can be well integrated into our 
model and their dynamics can be accurately captured. And in the congestion cascade case, it 
is shown that the model still demonstrates good performance when only the GFPMs are 
incorporated in its formulation while the data of cascading failure outcomes is independently 
generated using a well-established SFPM, i.e. flow redistributions. Considering the model’s 
accuracy, its versatility to incorporate known SFPMs and its robustness against (potentially 
unknown) SFPMs, we envision the backward approach to be a potential channel to a universal 
framework for modeling, understanding and controlling cascading failures in a variety of 
systems. 


