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Supplementary Figure S1: Classification of the asymptotic rescue states.The statistics are for all
cascades mitigated by a species removal in Fig. 2b of the paper. The rescue states are classified into cases
with n∗

new = n∗ (final state I),n∗
new = n∗ − 1 (final state II), andn∗

new < n∗ − 1 (final state III), where
n∗ corresponds to the target states consistent with the given forced removal that have the largest number of
nonzero-population species. This set of target states is classified according to whether the fixed points are
all stable, all unstable, or some stable and others unstable. For each of these cases, the mitigated cascades
are separated into those that reach a time-independent versus a time-dependent final state. In particular, the
rescued system is shown to approach one of the corresponding stable target states in most of the cases when
all such fixed points are stable (72.7% out of78.4%).
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Supplementary FigureS2:Example of a time-independent final state.(a) Cascading extinctions of two
species triggered by the primary removal of one species (not shown) attime zero. (b) Rescues of the two
cascading species determined by the proactive forced removal of a different species (not shown) shortly
after the primary removal. The forced removal corresponds to the sole zero-population species at a stable
target state (in addition to the primary removal), and this intervention drives thesystem to that state. The
network consists of 15 species, therefore withnp = 14, nc = 12, andnnew = n∗ = 13, and was simulated
using the Lotka-Volterra model.
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Supplementary FigureS3:Same as in Supplementary Figure S2 for a time-dependent final state. The
forced removal is on a species that corresponds to the sole zero at an unstable target state in addition to the
one introduced by the primary removal. This forced removal drives the system to an oscillatory state rather
than to the fixed point itself. The network consists of 15 species, therefore with np = 14, nc = 12, and
nnew = n∗ = 13, and was simulated using the Lotka-Volterra model.
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Supplementary FigureS4: Number of species rescued as a function of the size of the cascades. The
statistics correspond to the model networks considered in Supplementary Table S1. (a) Rescues based on
forced species removals in the case of the consumer-resource dynamics. (b-e) Rescues based on forced
species removals (b), forced removals limited to cascading species (c), forced partial removals (d), and
growth and mortality rate manipulation (e), in the case of the Lotka-Volterra dynamics. In each panel, the
dots correspond to the average over all realizations, the error bars to the standard deviations, the dashed line
to the theoretical maximum number of rescues, and the stars to the maximum numberof rescues observed
in our numerical experiments. The continuous lines are included to guide the eyes.
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Supplementary FigureS5:Variation with network size. Both the consumer-resource (CR) and the Lotka-
Volterra (LV) dynamics are tested for all single-species primary removals.(a-e) Fraction of realizations in
which there is no cascade≥ 2 (a-c) or ≥ 1 (d,e) (▽), in which such a cascade exists and can be mitigated
(◦), in which such a cascade exists and cannot be mitigated (�), and in which the network becomes discon-
nected by the primary removal (♦). (f, g) Fraction of all cascades≥ 2 that can be mitigated (•) and fraction
of all cascades with2 or more dynamical extinctions that can be mitigated (⊙•) for the scenarios shown in (a)
(f, consumer resource) and in (b-e) (g, Lotka-Volterra). The consumer-resource dynamics was implemented
using communities of mixed type. The simulations were implemented using1, 000 independent networks
of each size generated from an initial connectance of0.20.
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Supplementary FigureS6:Variation with connectance.The statistics are over all single-species primary
removals, for interventions based on the forced removal of one species. The different open symbols indicate
the fraction of realizations in which there is no cascade≥ 2 (▽), in which such a cascade exists and can
be mitigated (◦), in which such a cascade exists and cannot be mitigated (�), and in which the network
becomes disconnected by the primary removal (♦). The solid and semi-solid symbols indicate respectively
the fraction of all such cascades that can be mitigated (•) and the fraction of all cascades with2 or more
dynamical extinctions that can be mitigated (⊙• ). The simulations were implemented using the consumer-
resource dynamics with communities of mixed type and1, 000 independent networks of 15 species for
each parameter choice. The figure shows the resulting connectance forthe persistent 15-species networks
generated from initial connectance values of0.10, 0.15, 0.20, 0.25, and0.30 (see also Network Generation,
in Supplementary Methods).
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Supplementary Figure S7: Variation with the number of primary removals. The interventions are
based on the forced removal of one species. The symbols are defined as in Supplementary Figure S6. The
simulations were implemented using the consumer-resource dynamics in1, 000 independent networks of
15 species generated from an initial connectance of0.20.
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Supplementary Figure S8: Variation with community type. The statistics are over all single-species
primary removals, for interventions based on the forced removal of one species. The symbols are defined
as in Supplementary Figure S6. The simulations were implemented using the consumer-resource dynamics
in 1, 000 independent networks of 15 species generated from an initial connectance of0.20.

Food-web dynamics Lotka-Volterra Consumer Resource

Food-web structure Model networks Model networksChesapeake BayCoachella Valley

Intervention RS (%) RSc (%) PR (%) GM (%) RS (%) RS (%) RS (%)

No cascades 55.7 55.7 55.7 (24.1)55.7 (24.1) 75.7 72.1 82.9

Cascades mitigated 23.0 4.4 24.8 (25.0)20.1 (31.3) 15.9 25.4 7.0

Cascades not mitigated 21.3 39.9 19.5 (50.9)24.2 (44.6) 8.4 2.5 10.1

Supplementary Table S1: Statistics of extinction cascades triggered and extinction cascades mitigated.
The initially persistent networks are perturbed by the removal of one species (model food webs) or three
species (Chesapeake Bay and Coachella Valley food web). In columns RS, the control intervention consists
of the forced removal of one species. In column RSc, the forced removal is limited to the subset of species
that would be extinct by the cascade in the absence of intervention. In column PR, the removals can be
partial and include one or more species according to the number of species with reduced population at the
target state. In column GM, the intervention consists of reducing the growth rate of basal species and/or
increasing the mortality rate of other species. All percentages refer to cascades involving two or more
secondary extinctions, except for those in parenthesis, which also include cascades with a single secondary
extinction. The data for the model food webs were generated using1, 000 independent realizations of
networks with15 species, which were then perturbed by all single-species removals. Thetotal number of
realizations on which the statistics are based is13, 284 (Lotka-Volterra) and14, 206 (consumer resource),
where the difference from15 × 1, 000 is due to realizations in which the network becomes disconnected
following the primary removal. The corresponding number of realizations for the Chesapeake Bay food
web is3, 281 and for the Coachella Valley food web is4, 059.
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Supplementary Methods

Lotka-Volterra Model

In our implementation of the Lotka-Volterra predator-preymodel forn species, the dynamics

is determined by

dXi

dt
= Xi

(

bi +
∑

j

aijXj

)

, (S1)

whereXi is the population of speciesi per unit of area (population density),bi is the growth

rate and mortality rate for basal and non-basal species, respectively, andA = (aij) is the matrix

that accounts for the network of interactions between different species31. The growth rate is the

difference between reproduction and mortality rate, and the mortality rate refers specifically to

natural mortality rate, which is not accounted for by the last term in Eq. (S1). The network itself

is generated using the niche model32.

In our analysis, the initial population densityXi and growth ratebi are chosen randomly from

a uniform distribution in the interval(0, 1). In the case of non-basal species, the value ofbi

is negative, since it represents a mortality rate, and is drawn from a uniform distribution in the

interval(−1, 0). The nonzero entries of matrixA are selected according to following constraints.

If j feeds oni, thenaij is randomly selected from a uniform distribution in the interval (−1, 0) and

aji = −eaij, where the efficiency parametere > 0 is a measure of the amount of preys required

to produce a predator. If speciesi and speciesj do not share any direct link between them, then

aij = aji = 0. In our simulations we assume thate = 0.1. To prevent the population of basal

species from going to infinity in the absence of predators, weuse a self-regulating term for the

basal species. This is implemented by assigningaii = −0.01, wherei is for basal species only. If

speciesi has a cannibalistic link thenaii = v − ev, wherev is drawn from a uniform distribution

in the interval(−1, 0). Note that the mortality rate (or growth rate)bi and the interaction strength

aij for j 6= i are assumed to vary across species and pairs of species, respectively.

We assume that there is a thresholds for the population density below which the species go

extinct. This threshold reflects the constraints imposed bythe minimum viable population size40.

For the arbitrary units considered above, we select the threshold to bes = 10−3. We have verified

that our conclusions are not sensitive to the choice of this parameter, as long as the parameter is

small. In our simulations, Eq. (S1) is integrated over a sufficiently long time such that in the end all

remaining species attain a time-independent nonzero population or exhibit stationary oscillations

away from zero. The integration time used in our simulationsthat meets this criterion isT =

5 × 103. We have verified that this choice ofT accounts for most secondary extinctions (over

99% of them on average in the networks of15 species considered in the paper). The unit of time
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depends on the particular system under consideration. For example, in an ecosystem in which the

mortality rate ranges from0 to 3.5 yr−1 our unit of time will be1/3.5 of a year.

The Lotka-Volterra predator-prey model is well suited for our proof-of-concept study because

key aspects of its asymptotic behavior are analytically treatable (see Methods). The potential lim-

itations of the Lotka-Volterra model are: (i) the constant interaction matrixA does not account

for changes in the strengths of the interactions when there are significant changes in individual

prey populations; and (ii) in the space of parameters, the number of configurations that result in

persistent food webs with a realistic number of trophic levels decreases quickly with the number

of species (e.g., for the parameters considered in our numerical experiments, relatively few con-

figurations are persistent with> 3 trophic levels and more than15 species). However, the results

presented in the paper are not sensitive to these limitations; they remain valid for the consumer-

resource model, which is more realistic, generally more robust, and incorporates functional re-

sponses that account foradaptive behavior (i.e., behavior in which the relative consumptionof

preys per predator depends on the relative density of preys).

Consumer-Resource Model

We consider an implementation of then-species consumer-resource model29,30 in which the

dynamics of the basal species follows

dBi

dt
= riGiBi −

∑

j∈ co(i)

xjyBjFji/eji, (S2)

while the dynamics of the non-basal species is governed by

dBi

dt
= −xiBi +

∑

j∈ re(i)

xiyBiFij −
∑

j∈ co(i)

xjyBjFji/eji, (S3)

whereco(i) andre(i) denote the consumers (predators) and resources (preys) of speciesi, respec-

tively. In this model,Bi is the biomass per unit of area (biomass density),ri is the mass-specific

growth rate,Gi = (1 − Bi/K) is the logistic growth rate,K is the carrying capacity,xi is the

mass-specific metabolic rate relative to mass-specific growth rate,y is the mass-specific ingestion

rate relative to the mass-specific metabolic rate,eji is the assimilation efficiency of speciesj when

feeding oni, andFij is the functional response. The functional responseFji describes the amount

of preyi consumed per predatorj as a function of the prey density. A mass-specific rate is defined

as the rate per unit mass.

The functional response is given by

Fij =
Ωij × (Bj)

h

1 + wBi +
∑

k∈ re(i) Ωik × (Bk)h
, (S4)
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whereΩij is the relative rate of speciesj in the diet of speciesi andw accounts for the intraspecies

competition. Different types of functional responses can be obtained by selecting different values54

for the exponenth. Type II response, in which the amount of prey captured by a predator increases

sublinearly and saturates after the prey density increasesbeyond a certain value, is obtained by

settingh = 1. Type III response, which occurs in cases where the amount ofprey captured

initially increases superlinearly with increasing prey density, is obtained whenh = 2. Compared

to Type II, the predation for Type III response is smaller when prey density is small and larger

when prey density is large. Most diverse ecosystems have some pairs of species that interact

according to Type II response and others that interact according to Type III response. Hence, to

incorporate both responses we set the value ofh to lie in between1 and2. In our simulations

we takeΩij = 1/
∑

k∈ re(i) 1, meaning that the predators do not have preference over the different

prey species.

It is assumed that the average body mass of the species increases with the trophic level as

mi = Zτ−1, (S5)

whereτ denotes the trophic level andZ is a constant. This automatically sets the body mass of

the basal species to be unity. Employing the usual assumption55 that the mass-specific rates scale

asm−0.25
i , and choosing the time scale of the system in such a way that the mass-specific growth

rate of the basal species is unity, we obtain:

rj = 1, xi =
dx

dr

m−0.25
i , y =

dy

dx

, (S6)

wheredr, dx, anddy are allometric constants. Different indices are used forr andx becauser

exists only for basal species andx is used only for non-basal species in the model (Eqs. (S2)-

(S3)).

We follow ref. 56 in setting the parameter values for our numerical experiments. The assimi-

lation efficiency parametereij is set to0.85 for carnivores and0.45 for herbivores. For the ratio

dx/dr we use0.314 for invertebrates and0.88 for vertebrates. The mass-specific ingestion ratey

is set to8 and4 for invertebrates and vertebrates, respectively. A small amount of intraspecies

interference is allowed by takingw = 0.05 and a mixed functional response was used by se-

lecting h = 1.2. The carrying capacityK is taken to be1. We also setZ = 10, which is the

average in a global empirical database57. Because the Chesapeake Bay and Coachella Valley food

webs have both vertebrate and invertebrate species, in the simulations involving these networks

we usedy = 6 anddx/dr = 0.597, which are averages of the parameter values for vertebrates

and invertebrates56. The same values are used in our simulations of model food webs with mixed

vertebrate-invertebrate communities. To obtain persistent states vulnerable to cascades and in

which the population of all species are nonzero, we also changed the parameterw to 15.9 for the

Chesapeake Bay food web and8.75 for the Coachella Valley food web. In all cases, the initial

biomass densitiesBi are generated randomly from a uniform distribution in the interval(0, 1).
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Network Generation

The niche model is used to generate the network structure32. Every species is assigned a random

value ηi, the so-called niche value, which is drawn from a uniform distribution in the interval

(0, 1). Speciesi feeds on all the species whose niche value falls in a rangeri, where the center

of this range,ci, is drawn from a uniform distribution in(ri/2, ηi). The valueri itself is the

product betweenηi and a random number drawn from a beta distribution in the interval (0, 1).

The distribution has an expected value2C, whereC will be the expected directed connectance of

the resulting network. Every network has at least one basal species because we assignri = 0 to

the species with lowest niche value. In the end, the network is checked for connectedness, and

networks that are not connected are discarded. The strengths of the interactions are determined

by the model used to represent the dynamics, and are different for the Lotka-Volterra and the

consumer-resource model.

In the Lotka-Volterra model, to obtain a persistent food-web configuration, we start with initial

networks of50 nodes and500 links so thatC = 0.20. We then evolve the system according to Eq.

(S1) over a time intervalT = 5 × 103 to identify the largest connected set of species that remain

above the thresholds. We select the number of links to be500 because this choice typically leads

to a connected component with desirable properties, namelya persistent food web with up to15

species, realistic connectance, and maximum trophic level≈ 3. Our simulations are based on

selecting connected components with number of species ranging from 10 to 15, which represents

a good compromise between complexity and computational feasibility. These persistent networks

retain the properties of the niche model, including cannibalism and looping, and form the starting

point of our analysis. A persistent network here means that all species have nonzero populations

in the resulting food web.

In the consumer-resource model, the network structure is generated using the same procedure

except that, because the consumer-resource dynamics is more robust, in this case we implement

the niche model starting with networks of25 nodes and125 links. This choice is made so that

C = 0.20. We select connected networks with number of species ranging from 10 to 20 and use

the same values for the thresholds, now applied to the biomass density, and for the integration

time T as in the Lotka-Volterra model. We have also considered the impact of the connectance

by generating persistent networks with initial connectance varying from0.10 to 0.30 (see details

below).

Thus, in our simulations, each food web corresponds to an independent realization of the net-

work structure and an independent assignment of the initialpopulations (Xi in the Lotka-Volterra

model andBi in the consumer-resource model)†, with all other parameters kept fixed. The food

† In the case of the Lotka-Volterra model, this also includes an independent assignment of the corresponding growth
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webs are then perturbed by every single-species removal by removing one species at a time (the

effect of multiple removals is considered in connection with Supplementary Figure S7). This

corresponds ton simulations of a primary removal for a network ofn species. We discard real-

izations that become disconnected due to the primary perturbation. The discarded realizations are

not counted towards the statistics represented in Figs. 2 and 4 and in Supplementary Table S1.

The rationale for this choice is that the fragmentation of a food web may be an artifact of the non-

inclusion of other species likely to be present in realisticsituations, which could have significant

influence on the dynamics of the network at the edge of fragmentation.

Stability Analysis

Supplementary Figure S1 shows the properties of the asymptotic states as compared to those

of target states for cascades mitigated by forced species removals. For a given forced removal,

the corresponding set of target states with largestn∗ can consist of only stable fixed points, only

unstable fixed points, or both. For each of these cases, the figure shows the break down according

to whether the final state hasn∗
new = n∗, n∗

new = n∗ − 1, or n∗
new < n∗ − 1. It also shows a

further break down according to whether the final state is time independent (i.e., a stable fixed

point) or time dependent. With the exception of the casen∗
new = n∗ for unstable fixed points and

the negligible casen∗
new < n∗ − 1 for coexisting stable and unstable fixed points, all cases tend to

converge more often to time-independent states.

Supplementary Figure S2 shows an example of the control of a cascade of extinctions through

the forced removal of one species when the target state is stable. As the system approaches the sta-

ble fixed point, all populations approach a steady-state asymptotic configuration. Supplementary

Figure S3 shows a similar example for the case of an unstable target state. In this case all popu-

lations exhibit persistent oscillations in time, which areconsistent with the existence of a stable

limit cycle around the corresponding unstable fixed point58. In Lotka-Volterra systems, solutions

not approaching stable fixed points may also exhibit chaoticbehavior59, but previous studies have

shown that the prevalence of chaotic dynamics decreases both with the increase in network size

and the reduction in the number of trophic levels60. In agreement with this prediction, we do not

find chaos to be prevalent in the (relatively large) food webswith moderate number of trophic

levels considered in our numerical experiments.

and mortality ratesbi.
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Comparison between Models

It is instructive to write the Lotka-Volterra model in a formthat is similar to the consumer-

resource model. Employing the definition ofco(i) and re(i) introduced in connection with

Eqs. (S2)-(S3), the Lotka-Volterra equations for basal andnon-basal species take the form

Ẋi = Xi (bi − |aii|Xi) −
∑

j∈ co(i)

HjiXj/e, (S7)

Ẋi = −Xi|bi| +
∑

j∈ re(i)

HijXi −
∑

j∈ co(i)

HjiXj/e, (S8)

respectively, whereHji = ajiXi is a Type I functional response. That is, in contrast with the

consumer-resource model, in the Lotka-Volterra model the amount of a prey species consumed

per predator grows linearly with the population density of that species.

Accordingly, the structure of the resulting persistent food webs is different for the two mod-

els. For the model food webs considered in Fig. 2 of the paper,which have size15, the average

maximum trophic level‡ is found to be2.9 ± 0.2 and3.4 ± 0.5 for the Lotka-Volterra model and

consumer-resource model, respectively. The resulting connectance is0.16± 0.03 and0.19± 0.05,

respectively, where the connectance is defined asℓ/n2 for ℓ directed links andn species. Basal

species consist of48.5± 5.2% of all species for the Lotka-Volterra model and32.0± 8.0% for the

consumer-resource model.

Fraction of Cascades Mitigated

Supplementary Table S1 shows the fraction of cascades mitigated in model food webs of 15

species, in the Chesapeake Bay food web, which has 33 species, and in the Coachella Valley

food web, which has 30 species. The absolute number of mitigated cascades is comparatively

smaller for the consumer-resource model than for the Lotka-Volterra model, but that is because

the consumer-resource dynamics is less prone to extinctioncascades in the first place30. Forty

percent or more of the cascades of minimum size2 are mitigated in all cases, except for intentional

removals limited to cascading extinctions, which are expected to produce a lower yield. In the case

of partial removals and manipulation of mortality rates, cascades of size1 can also be rescued,

although such rescues are less frequent because target states in which all populations are positive

are relatively rare (cascades of size1 constitute31.6% of all the realizations for Lotka-Volterra

dynamics, but rescued cascades of size1 constitute only0.2% for partial removals and11.2% for

growth and mortality rate control). Cascades with structural extinctions and only one dynamical

‡ The trophic levels were estimated using the prey-averaged trophic level algorithm35.
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extinction are similarly difficult to mitigate, but they canin some cases be mitigated by the forced

removal of one of the species that would vanish as a structural extinction. While we have found no

such rescues in the1.4% of all realizations that correspond to such cascades in the Lotka-Volterra

dynamics, in the consumer-resource dynamics approximately 0.2% of all realizations can be rescue

through this mechanism (out of a total of4.0% corresponding to such cascades). Realizations that

lead to a disconnected network after the primary removal arenot included in the calculations of

these percentages.

Number of Species Rescued

Supplementary Figure S4 shows the number of species rescuedas a function of the size of the

cascades for the model networks considered in Supplementary Table S1. In all cases, a signifi-

cant fraction of secondary extinctions is prevented. In many cases the number of species rescued

corresponds to the theoretical maximum, namely,n∗
new = np − 1 for the forced removal of one

species andn∗
new = np for partial removals and for the manipulation of growth and mortality

rates. The forced removal of one species is comparably effective for the consumer-resource and

Lotka-Volterra dynamics (Supplementary Fig. S4a,b). Among the interventions considered for the

Lotka-Volterra dynamics (Supplementary Fig. S4b-e), the manipulation of growth and mortality

rates is the most effective one. In the case of forced removals, it is interesting to observe that

the interventions remain nearly as effective when they are limited to the set of cascading species

(Supplementary Fig. S4c). Note that this refers to the number of rescues in cascades that are miti-

gated. The fraction of cascades mitigated provides a different measure of the effectiveness of the

interventions (previous Section).

Variation with Network Size, Connectance, Perturbation Size, andCommunity Type

Supplementary Figure S5 shows the statistics of perturbations and rescues as a function of

the network size for forced removals in the consumer-resource systems and various rescue inter-

ventions in the Lotka-Volterra systems. An important aspect of these results is that each control

strategy exhibits a monotonic increase in the percentage ofcascades mitigated as the network size

is increased (Supplementary Fig. S5f,g). A relatively large fraction of cascades cannot be miti-

gated when cascades consisting of a single secondary extinction are included, such as in the cases

of partial removals and manipulations of growth and mortality rates (Supplementary Fig. S5d,e;

solid symbols), but this is mainly because cascades of size one are more difficult to mitigate. The

rescue rates are substantially higher among cascades of size larger than one and even higher for

cascades with at least two dynamical extinctions, i.e., extinctions not directly determined by the

lack of connectivity in the network (Supplementary Fig. S5f,g).
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Extinctions that are not dynamical are said to be structuraland occur when a non-basal species

is left without any directed path connecting it to basal species of the food web. Structural ex-

tinctions are less common for the Lotka-Volterra than for the consumer-resource model and this

is so because persistent Lotka-Volterra food webs have a smaller number of trophic levels and a

larger number of basal species. In contrast with structuralextinctions, dynamical extinctions can

in principle be prevented by the interventions considered in the paper.

Supplementary Figure S6 shows the corresponding statistics as the connectance is varied from

0.10% to 0.30%. The fraction mitigated of all cascades increases slowly and reaches a saturation

with increasing connectance (solid symbols). This change is in fact overcompensated by the con-

current decrease observed in the fraction of structural extinctions (semi-solid symbols). For all

connectances, approximately2/3 of the cascades can be mitigated. These results refer to forced

removals in networks of 15 species simulated using the consumer-resource dynamics with com-

munities of mixed type, but represent a more general trend.

Supplementary Figure S7 shows similar statistics as a function of the size of the primary pertur-

bation. The perturbations consist of single, double and triple removals in networks of 15 species

generated from an initial connectance of0.20 and simulated using the consumer-resource dynam-

ics with communities of mixed type. As above, varying a single parameter (in this case the size of

the perturbation) is necessary for numerical feasibility.The fraction mitigated of all cascades de-

creases as the size of the perturbation increases (solid symbols), and similar behavior is observed

when structural extinctions are factored out (semi-solid symbols). This dependence is expected

because increasing the perturbation size increases the damage in the network, making it more dif-

ficult to be rescued. Increasing the perturbation size also reduces the size of the network and, as

predicted above, extinction cascades are generally more difficult to mitigate in smaller networks.

Supplementary Figure S8 shows the statistics of perturbations and rescues for different types

of communities. We observe a slow increase in the fraction ofcascades mitigated as we go from

invertebrate communities, to mixed communities, to vertebrate communities (solid symbols), and

this change matches the change in the frequency of structural extinctions (semi-solid symbols).

The latter suggests that the theoretical limit on the fraction of cascades that can be mitigated will

be larger in communities with more vertebrates.
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