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Supplementary Figure S1: Classification of the asymptotic rescue statesThe statistics are for all
cascades mitigated by a species removal in Fig. 2b of the paper. The states are classified into cases
with n .., = n* (final state I),n;.,, = n* — 1 (final state Il), and:;,,, < n* — 1 (final state IIl), where

n* corresponds to the target states consistent with the given forced retmaviaave the largest number of
nonzero-population species. This set of target states is classifiediagrto whether the fixed points are
all stable, all unstable, or some stable and others unstable. For eackettwses, the mitigated cascades
are separated into those that reach a time-independent versus a timeetggmal state. In particular, the
rescued system is shown to approach one of the corresponding stgblestates in most of the cases when

all such fixed points are stablgX7% out of 78.4%).
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Supplementary Figure S2: Example of a time-independent final state(a) Cascading extinctions of two
species triggered by the primary removal of one species (not shovimetrero. b) Rescues of the two
cascading species determined by the proactive forced removal ofegediffspecies (not shown) shortly
after the primary removal. The forced removal corresponds to the saeppulation species at a stable
target state (in addition to the primary removal), and this intervention drivesysgtem to that state. The
network consists of 15 species, therefore with= 14, n¢ = 12, andn,,.,, = n* = 13, and was simulated
using the Lotka-Volterra model.
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Supplementary Figure S3: Same as in Supplementary Figure S2 for a time-dependent final statThe
forced removal is on a species that corresponds to the sole zero astable target state in addition to the
one introduced by the primary removal. This forced removal drives thiesyto an oscillatory state rather
than to the fixed point itself. The network consists of 15 species, thergfibth n? = 14, n¢ = 12, and
nnew = 1 = 13, and was simulated using the Lotka-Volterra model.
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Supplementary Figure S4: Number of species rescued as a function of the size of the cascad&éhe
statistics correspond to the model networks considered in SupplementdeySTh &) Rescues based on
forced species removals in the case of the consumer-resource dynglresRescues based on forced
species removaldj, forced removals limited to cascading species forced partial removalsdj, and
growth and mortality rate manipulatior)( in the case of the Lotka-Volterra dynamics. In each panel, the
dots correspond to the average over all realizations, the error baesstatidard deviations, the dashed line
to the theoretical maximum number of rescues, and the stars to the maximum rafmdssmues observed

in our numerical experiments. The continuous lines are included to guidgdle e
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Supplementary Figure S5: Variation with network size. Both the consumer-resource (CR) and the Lotka-
Volterra (LV) dynamics are tested for all single-species primary removals) Fraction of realizations in
which there is no cascade 2 (a-c) or > 1 (d,e) (V), in which such a cascade exists and can be mitigated
(O), in which such a cascade exists and cannot be mitigaigdfd in which the network becomes discon-
nected by the primary removaj). (f, g) Fraction of all cascades 2 that can be mitigated] and fraction

of all cascades with or more dynamical extinctions that can be mitigatejifor the scenarios shown ia)Y

(f, consumer resource) and in-€) (g, Lotka-Volterra). The consumer-resource dynamics was implemented
using communities of mixed type. The simulations were implemented usiit) independent networks
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Supplementary Figure S6: Variation with connectance. The statistics are over all single-species primary
removals, for interventions based on the forced removal of one spétieslifferent open symbols indicate
the fraction of realizations in which there is no cascade (v), in which such a cascade exists and can
be mitigated ©), in which such a cascade exists and cannot be mitigat¢dand in which the network
becomes disconnected by the primary remogal The solid and semi-solid symbols indicate respectively
the fraction of all such cascades that can be mitigaé¢@uid the fraction of all cascades withor more
dynamical extinctions that can be mitigatesl)( The simulations were implemented using the consumer-
resource dynamics with communities of mixed type andoo0 independent networks of 15 species for
each parameter choice. The figure shows the resulting connectartbe fogrsistent 15-species networks
generated from initial connectance value$df), 0.15, 0.20, 0.25, and0.30 (see also Network Generation,
in Supplementary Methods).
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Supplementary Figure S7: Variation with the number of primary removals. The interventions are
based on the forced removal of one species. The symbols are define&applementary Figure S6. The

simulations were implemented using the consumer-resource dynamic80i independent networks of
15 species generated from an initial connectande2sk.
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Supplementary Figure S8: Variation with community type. The statistics are over all single-species
primary removals, for interventions based on the forced removal of paees. The symbols are defined
as in Supplementary Figure S6. The simulations were implemented using thenssrgsource dynamics

in 1,000 independent networks of 15 species generated from an initial comeead).20.

Food-web dynamics Lotka-\Volterra Consumer Resource

Food-web structure Model networks Model networksChesapeake BagZoachella Valley
Intervention RS (%) RS (%)| PR (%) | GM (%) RS (%) RS (%) RS (%)

No cascades 55.7 | 55.7 |55.7 (24.1)55.7 (24.1 75.7 72.1 82.9
Cascades mitigated 23.0 4.4 |24.8(25.0)20.1 (31.3 15.9 254 7.0
Cascades not mitigated| 21.3 | 39.9 [19.5(50.9)24.2 (44.6 8.4 2.5 10.1

Supplementary Table S1 Statistics of extinction cascades triggered and extinction cascad mitigated.
The initially persistent networks are perturbed by the removal of ondepémodel food webs) or three
species (Chesapeake Bay and Coachella Valley food web). In coluSirteé&control intervention consists
of the forced emoval of one gecies. In column RSthe forced removal is limited to the subset of species
that would be extinct by the cascade in the absence of intervention. ImodRR, the @movals can be
partial and include one or more species according to the number of spatiegtuced population at the
target state. In column GM, the intervention consists of reducing tbet rate of basal species and/or
increasing the mrtality rate of other species. All percentages refer to cascades ingawin or more
secondary extinctions, except for those in parenthesis, which alsa@@chscades with a single secondary
extinction. The data for the model food webs were generated usi@) independent realizations of
networks with15 species, which were then perturbed by all single-species removalgofBh@umber of
realizations on which the statistics are basetBi®284 (Lotka-Volterra) andl4, 206 (consumer resource),
where the difference from5 x 1,000 is due to realizations in which the network becomes disconnected
following the primary removal. The corresponding number of realizationshi® Chesapeake Bay food
web is3, 281 and for the Coachella Valley food web4s059.




Supplementary Methods

Lotka-Volterra Model

In our implementation of the Lotka-Volterra predator-pregdel forn species, the dynamics
is determined by

dX;

where X; is the population of speciesper unit of area (population densityj, is the growth
rate and mortality rate for basal and non-basal specigsecésely, and4 = (a;;) is the matrix
that accounts for the network of interactions between wiffe specied. The growth rate is the
difference between reproduction and mortality rate, amdntiortality rate refers specifically to
natural mortality rate, which is not accounted for by thd tasm in Eqg. (S1). The network itself
is generated using the niche model

In our analysis, the initial population densily; and growth raté; are chosen randomly from
a uniform distribution in the interval0,1). In the case of non-basal species, the valué,of
is negative, since it represents a mortality rate, and igalfaom a uniform distribution in the
interval (—1,0). The nonzero entries of matrix are selected according to following constraints.
If j feeds on, thena,; is randomly selected from a uniform distribution in the md (—1, 0) and
a;; = —ea;;, where the efficiency parameter> 0 is a measure of the amount of preys required
to produce a predator. If specieand specieg do not share any direct link between them, then
a;; = aj; = 0. In our simulations we assume that= 0.1. To prevent the population of basal
species from going to infinity in the absence of predatorsuse a self-regulating term for the
basal species. This is implemented by assigaing- —0.01, wherei is for basal species only. If
species has a cannibalistic link thew; = v — ev, wherev is drawn from a uniform distribution
in the interval(—1,0). Note that the mortality rate (or growth ratg)and the interaction strength
a;j for j # i are assumed to vary across species and pairs of species;tesiy.

We assume that there is a threshsltbr the population density below which the species go
extinct. This threshold reflects the constraints imposethbyminimum viable population si%®
For the arbitrary units considered above, we select thaliotd to bes = 1073. We have verified
that our conclusions are not sensitive to the choice of taraupeter, as long as the parameter is
small. In our simulations, Eq. (S1) is integrated over a sidfitly long time such that in the end all
remaining species attain a time-independent nonzero populor exhibit stationary oscillations
away from zero. The integration time used in our simulatithred meets this criterion i =
5 x 103. We have verified that this choice @f accounts for most secondary extinctions (over
99% of them on average in the networksléfspecies considered in the paper). The unit of time
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depends on the particular system under consideration.Xaon@e, in an ecosystem in which the
mortality rate ranges froffito 3.5 yr~! our unit of time will be1/3.5 of a year.

The Lotka-Volterra predator-prey model is well suited far proof-of-concept study because
key aspects of its asymptotic behavior are analyticallgtakele (see Methods). The potential lim-
itations of the Lotka-Volterra model aret) the constant interaction matrix does not account
for changes in the strengths of the interactions when thereignificant changes in individual
prey populations; andif in the space of parameters, the number of configuratiorigéisalt in
persistent food webs with a realistic number of trophic lewkecreases quickly with the number
of species (e.g., for the parameters considered in our noahe@xperiments, relatively few con-
figurations are persistent with 3 trophic levels and more thalb species). However, the results
presented in the paper are not sensitive to these limitgtitvey remain valid for the consumer-
resource model, which is more realistic, generally moreustband incorporates functional re-
sponses that account fadaptive behavior (i.e., behavior in which the relative consumptidn
preys per predator depends on the relative density of preys)

Consumer-Resource Model

We consider an implementation of thespecies consumer-resource maédié in which the
dynamics of the basal species follows

dB;
dt

=GB, — Z »’ijBiji/ejz', (S2)

JE co(7)
while the dynamics of the non-basal species is governed by

dB;
dt

= —u;B; + Z z;yB;iFij — Z zyBiFji/eji, (S3)
jere(i) j€ co(d)
whereco(i) andre(i) denote the consumers (predators) and resources (prey®oeés, respec-
tively. In this model,B; is the biomass per unit of area (biomass densityls the mass-specific
growth rate,GG; = (1 — B;/K) is the logistic growth rateK is the carrying capacity; is the
mass-specific metabolic rate relative to mass-specifictyroate,y is the mass-specific ingestion
rate relative to the mass-specific metabolic rafgis the assimilation efficiency of specigsvhen
feeding oni, andF}; is the functional response. The functional respafiselescribes the amount
of prey: consumed per predatgias a function of the prey density. A mass-specific rate is ddfin
as the rate per unit mass.
The functional response is given by
Q; x (By)"

Fi' - )

(S4)
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where(;; is the relative rate of specigsn the diet of speciesandw accounts for the intraspecies
competition. Different types of functional responses caolbtained by selecting different valdés
for the exponenk. Type Il response, in which the amount of prey captured byedator increases
sublinearly and saturates after the prey density increlasgsnd a certain value, is obtained by
settingh = 1. Type lll response, which occurs in cases where the amoupteyf captured
initially increases superlinearly with increasing preysi¢y, is obtained wheh = 2. Compared
to Type I, the predation for Type Ill response is smaller wipeey density is small and larger
when prey density is large. Most diverse ecosystems have g@ins of species that interact
according to Type |l response and others that interact doupto Type Ill response. Hence, to
incorporate both responses we set the valug @ lie in betweenl and2. In our simulations
we take(;; = 1/%,,.; 1, meaning that the predators do not have preference oveiftaeedt
prey species.

It is assumed that the average body mass of the speciessesredth the trophic level as

m; = ZTﬁl, (85)

wherer denotes the trophic level arid is a constant. This automatically sets the body mass of
the basal species to be unity. Employing the usual assuniptizat the mass-specific rates scale
asm; °?°, and choosing the time scale of the system in such a way teah#iss-specific growth
rate of the basal species is unity, we obtain:

T,y =, (s6)
whered,, d,, andd, are allometric constants. Different indices are used-fandx because
exists only for basal species ands used only for non-basal species in the model (Egs. (S2)-
(S3)).

We follow ref. 56 in setting the parameter values for our ntioa experiments. The assimi-
lation efficiency parametet;; is set to0.85 for carnivores and.45 for herbivores. For the ratio
d./d, we use).314 for invertebrates and.88 for vertebrates. The mass-specific ingestion gate
is set to8 and4 for invertebrates and vertebrates, respectively. A snmabhunt of intraspecies
interference is allowed by taking = 0.05 and a mixed functional response was used by se-
lectingh = 1.2. The carrying capacitys is taken to bel. We also set/ = 10, which is the
average in a global empirical databzs@ecause the Chesapeake Bay and Coachella Valley food
webs have both vertebrate and invertebrate species, irirthgasions involving these networks
we usedy = 6 andd,/d,. = 0.597, which are averages of the parameter values for vertebrates
and invertebraté8 The same values are used in our simulations of model food with mixed
vertebrate-invertebrate communities. To obtain pensisséates vulnerable to cascades and in
which the population of all species are nonzero, we alsogd@dithe parameter to 15.9 for the
Chesapeake Bay food web ald’5 for the Coachella Valley food web. In all cases, the initial

biomass densitieB; are generated randomly from a uniform distribution in thterival (0, 1).

7"]':1, €T; =
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Network Generation

The niche model is used to generate the network stru&tUEsery species is assigned a random
value n;, the so-called niche value, which is drawn from a uniformtrdistion in the interval
(0,1). Species feeds on all the species whose niche value falls in a rangehere the center
of this range,c;, is drawn from a uniform distribution iir; /2, n;). The valuer; itself is the
product betweem,; and a random number drawn from a beta distribution in thevat€0, 1).
The distribution has an expected valk&, whereC will be the expected directed connectance of
the resulting network. Every network has at least one bagsalies because we assign= 0 to
the species with lowest niche value. In the end, the netwoidhecked for connectedness, and
networks that are not connected are discarded. The stenfthe interactions are determined
by the model used to represent the dynamics, and are diffésehe Lotka-\Volterra and the
consumer-resource model.

In the Lotka-Volterra model, to obtain a persistent foodswenfiguration, we start with initial
networks of50 nodes and00 links so that”' = 0.20. We then evolve the system according to Eq.
(S1) over a time interval’ = 5 x 10? to identify the largest connected set of species that remain
above the thresholel We select the number of links to b80 because this choice typically leads
to a connected component with desirable properties, naanpbrsistent food web with up i
species, realistic connectance, and maximum trophic kev8l Our simulations are based on
selecting connected components with number of speciesnguirgm 10 to 15, which represents
a good compromise between complexity and computationalldity. These persistent networks
retain the properties of the niche model, including canisbaand looping, and form the starting
point of our analysis. A persistent network here means thapacies have nonzero populations
in the resulting food web.

In the consumer-resource model, the network structurernisrgéed using the same procedure
except that, because the consumer-resource dynamics ésrotarst, in this case we implement
the niche model starting with networks 2% nodes and 25 links. This choice is made so that
C = 0.20. We select connected networks with number of species rgrfgam 10 to 20 and use
the same values for the threshaldnow applied to the biomass density, and for the integration
time 7" as in the Lotka-Volterra model. We have also consideredrtigact of the connectance
by generating persistent networks with initial conneceawarying from0.10 to 0.30 (see details
below).

Thus, in our simulations, each food web corresponds to agpieident realization of the net-
work structure and an independent assignment of the ipidpulations {; in the Lotka-Volterra
model andB; in the consumer-resource modelvith all other parameters kept fixed. The food

tIn the case of the Lotka-Volterra model, this also includesaependent assignment of the corresponding growth
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webs are then perturbed by every single-species removarbgving one species at a time (the
effect of multiple removals is considered in connectionhwBupplementary Figure S7). This

corresponds ta simulations of a primary removal for a network ofspecies. We discard real-

izations that become disconnected due to the primary etion. The discarded realizations are
not counted towards the statistics represented in Figs.d2amd in Supplementary Table S1.
The rationale for this choice is that the fragmentation a@dfweb may be an artifact of the non-
inclusion of other species likely to be present in realistioations, which could have significant

influence on the dynamics of the network at the edge of fragatien.

Stability Analysis

Supplementary Figure S1 shows the properties of the asyimgtates as compared to those
of target states for cascades mitigated by forced specmswvads. For a given forced removal,
the corresponding set of target states with largéstan consist of only stable fixed points, only
unstable fixed points, or both. For each of these cases, the finows the break down according
to whether the final state has,, = »*, n;,, = n*—1,0orn},,, < n*— 1. It also shows a
further break down according to whether the final state i® tindependent (i.e., a stable fixed
point) or time dependent. With the exception of the case = n* for unstable fixed points and
the negligible case; , < n* — 1 for coexisting stable and unstable fixed points, all cased te
converge more often to time-independent states.

Supplementary Figure S2 shows an example of the control aseacle of extinctions through
the forced removal of one species when the target statedlesias the system approaches the sta-
ble fixed point, all populations approach a steady-statenpgytic configuration. Supplementary
Figure S3 shows a similar example for the case of an unstafgettstate. In this case all popu-
lations exhibit persistent oscillations in time, which amnsistent with the existence of a stable
limit cycle around the corresponding unstable fixed p8inin Lotka-Volterra systems, solutions
not approaching stable fixed points may also exhibit chadmteavio?®, but previous studies have
shown that the prevalence of chaotic dynamics decreashsnitbt the increase in network size
and the reduction in the number of trophic lef&ldn agreement with this prediction, we do not
find chaos to be prevalent in the (relatively large) food wefith moderate number of trophic

levels considered in our numerical experiments.

and mortality rate$,.
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Comparison between Models

It is instructive to write the Lotka-\Volterra model in a forthat is similar to the consumer-
resource model. Employing the definition af(i) and re(i) introduced in connection with
Egs. (S2)-(S3), the Lotka-Volterra equations for basalraombasal species take the form

Xi = X; (b — laulXi) = Y HyXj/e, (57)
JE co(7)

Xo— X+ Y HaXi— Y /e (s9)
jere(i) J€ co(i)

respectively, wheréd;; = a;;X; is a Type | functional response. That is, in contrast with the
consumer-resource model, in the Lotka-Volterra model theunt of a prey species consumed
per predator grows linearly with the population densitytattspecies.

Accordingly, the structure of the resulting persistentdawebs is different for the two mod-
els. For the model food webs considered in Fig. 2 of the papich have sizd 5, the average
maximum trophic levélis found to be2.9 4 0.2 and3.4 + 0.5 for the Lotka-Volterra model and
consumer-resource model, respectively. The resultingecance i9.16 + 0.03 and0.19 4 0.05,
respectively, where the connectance is defined/as for ¢ directed links andh species. Basal
species consist afl.5 + 5.2% of all species for the Lotka-Volterra model ap2i0 + 8.0% for the
consumer-resource model.

Fraction of Cascades Mitigated

Supplementary Table S1 shows the fraction of cascadesatg@tign model food webs of 15
species, in the Chesapeake Bay food web, which has 33 spentks) ¢he Coachella Valley
food web, which has 30 species. The absolute number of retigeascades is comparatively
smaller for the consumer-resource model than for the LdtHgerra model, but that is because
the consumer-resource dynamics is less prone to extinctisnades in the first plate Forty
percent or more of the cascades of minimum giaee mitigated in all cases, except for intentional
removals limited to cascading extinctions, which are etgebto produce a lower yield. In the case
of partial removals and manipulation of mortality ratessaaes of sizé can also be rescued,
although such rescues are less frequent because targstistathich all populations are positive
are relatively rare (cascades of sizeonstitute31.6% of all the realizations for Lotka-\Volterra
dynamics, but rescued cascades of sizenstitute only).2% for partial removals and1.2% for
growth and mortality rate control). Cascades with strudtexéinctions and only one dynamical

t The trophic levels were estimated using the prey-averaggtic level algorithri.
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extinction are similarly difficult to mitigate, but they cansome cases be mitigated by the forced
removal of one of the species that would vanish as a strdeautiaction. While we have found no
such rescues in the4% of all realizations that correspond to such cascades in dlkak\Volterra
dynamics, in the consumer-resource dynamics approxiyn@tl of all realizations can be rescue
through this mechanism (out of a total4f% corresponding to such cascades). Realizations that
lead to a disconnected network after the primary removahatencluded in the calculations of
these percentages.

Number of Species Rescued

Supplementary Figure S4 shows the number of species reasuetlinction of the size of the
cascades for the model networks considered in Supplenyefahte S1. In all cases, a signifi-
cant fraction of secondary extinctions is prevented. Inyrmaases the number of species rescued
corresponds to the theoretical maximum, namejy,, = n” — 1 for the forced removal of one
species andv’_,, = n? for partial removals and for the manipulation of growth andrtality
rates. The forced removal of one species is comparablytefeior the consumer-resource and
Lotka-Volterra dynamics (Supplementary Fig. S4a,b). Agithre interventions considered for the
Lotka-Volterra dynamics (Supplementary Fig. S4b-e), tlanipulation of growth and mortality
rates is the most effective one. In the case of forced remapvais interesting to observe that
the interventions remain nearly as effective when theyiargdd to the set of cascading species
(Supplementary Fig. S4c). Note that this refers to the nurobeescues in cascades that are miti-
gated. The fraction of cascades mitigated provides a diffemeasure of the effectiveness of the
interventions (previous Section).

Variation with Network Size, Connectance, Perturbation Size, andCommunity Type

Supplementary Figure S5 shows the statistics of pertunbsitand rescues as a function of
the network size for forced removals in the consumer-resogystems and various rescue inter-
ventions in the Lotka-Volterra systems. An important aspéthese results is that each control
strategy exhibits a monotonic increase in the percentagasmfades mitigated as the network size
is increased (Supplementary Fig. S5f,g). A relatively éafigaction of cascades cannot be miti-
gated when cascades consisting of a single secondary ttirgce included, such as in the cases
of partial removals and manipulations of growth and mastatates (Supplementary Fig. S5d,e;
solid symbols), but this is mainly because cascades of siegeace more difficult to mitigate. The
rescue rates are substantially higher among cascadesedasyer than one and even higher for
cascades with at least two dynamical extinctions, i.einetbns not directly determined by the
lack of connectivity in the network (Supplementary Fig. 8kf
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Extinctions that are not dynamical are said to be strucamdloccur when a non-basal species
is left without any directed path connecting it to basal sg®of the food web. Structural ex-
tinctions are less common for the Lotka-\Volterra than fa tonsumer-resource model and this
iS S0 because persistent Lotka-Volterra food webs have #esmamber of trophic levels and a
larger number of basal species. In contrast with structxthctions, dynamical extinctions can
in principle be prevented by the interventions considenettié paper.

Supplementary Figure S6 shows the corresponding statasithe connectance is varied from
0.10% to 0.30%. The fraction mitigated of all cascades increases slowtyreaches a saturation
with increasing connectance (solid symbols). This chaage fact overcompensated by the con-
current decrease observed in the fraction of structurahetidns (semi-solid symbols). For all
connectances, approximately3 of the cascades can be mitigated. These results refer tedorc
removals in networks of 15 species simulated using the coaswesource dynamics with com-
munities of mixed type, but represent a more general trend.

Supplementary Figure S7 shows similar statistics as aifumof the size of the primary pertur-
bation. The perturbations consist of single, double amdettiemovals in networks of 15 species
generated from an initial connectancelaf0 and simulated using the consumer-resource dynam-
ics with communities of mixed type. As above, varying a sengrameter (in this case the size of
the perturbation) is necessary for numerical feasibiliye fraction mitigated of all cascades de-
creases as the size of the perturbation increases (solidadgmand similar behavior is observed
when structural extinctions are factored out (semi-sojishtsols). This dependence is expected
because increasing the perturbation size increases theggaimthe network, making it more dif-
ficult to be rescued. Increasing the perturbation size @daaes the size of the network and, as
predicted above, extinction cascades are generally mifiieuttito mitigate in smaller networks.

Supplementary Figure S8 shows the statistics of pertunhsind rescues for different types
of communities. We observe a slow increase in the fractiocastades mitigated as we go from
invertebrate communities, to mixed communities, to vegebcommunities (solid symbols), and
this change matches the change in the frequency of strliextiactions (semi-solid symbols).
The latter suggests that the theoretical limit on the foactf cascades that can be mitigated will
be larger in communities with more vertebrates.
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