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About 
 
  

his workshop brought together a diverse group of experts in complementary areas of complex 
systems and was preceded by a series of weekly webinars (see references W1 to W6). The overarching 

goal of the activity was to address scientific issues that are relevant to the research community and reveal 
possible areas of opportunity for multidisciplinary research in the study of complex systems. The specific 
goals of the workshop included: 
o identifying the most substantive research questions that can be addressed by fundamental complex 

systems research; 
o recognizing community needs, knowledge gaps, and barriers to research progress in this area; 
o identifying future directions that cut across disciplinary boundaries and that are likely to lead to 

transformative multidisciplinary research in complex systems. 
 
The workshop was held at the National Science Foundation on May 1-3, 2017, supported by Award # 
DMS-1647351, and was attended by 48 scientists, mathematicians, and engineers. 
 
The workshop was motivated by the observation that many processes in natural, engineered, and social 
contexts exhibit emergent collective behavior and are thus governed by complex systems. Because 
challenges in understanding, predicting, designing, and controlling complex systems are often common 
to many domains, a central objective of the workshop was to facilitate the exchange of ideas across 
different fields and circumvent disciplinary boundaries typical of many traditional scientific meetings. The 
workshop participants included experts in both theory and applications, as well as a selection of 
postdoctoral researchers and graduate students from various domains. Because of the cross-disciplinary 
nature of the workshop, the participants themselves had the opportunity to become aware of the latest 
developments in fields related to, but different from, their own. The inclusion of early-career researchers 
will help promote the transfer of this expertise to the next generation of researchers. The environment 
fostered discussions on the state of the art, potential issues, and most promising directions in 
multidisciplinary complex systems research.  
 
This report includes outcomes of the workshop that can help inform the scientific community at large of 
the current status and challenges as well as future opportunities in multidisciplinary complex systems 
research as perceived by the participants of the workshop.  
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Multidisciplinary Needs and Opportunities 
 
 

ne of the identified needs is scientific community development. Examples include areas at the 
interfaces between fields such as chemistry, physics, biology; energy production, storage, and 

conversion; and medicine, nanotechnology, and materials engineering. Primary to this is a continued 
strong connection between theory, experiments, and simulations. Indeed, many of the systems lacking 
theoretical explanation were discovered through careful experiment. For example, tools to experimentally 
study and perturb molecular systems are remarkably advanced as compared to other scales. This includes 
tools to manipulate experimental parameters and system components, and to perform measurements with 
single molecule resolution. This level of control provides a unique opportunity for iteratively building and 
testing complex models that describe such systems. Future experimental directions include using 
microfluidics to control and probe scale effects on systems and to continue to explore the differences in 
observed collective behavior depending on the source and type of driving of the system components. The 
types of driving that need continued experimental exploration range from classical hydrodynamic effects 
to chemical, biochemical, and quantum interactions, which in turn requires properly trained personnel 
and hence well-structured communities around these topics. 
 
Support for interactions between theoreticians and experimentalists and for training researchers to 
approach a problem from multiple spatial and temporal scales was identified among the main strategies 
for progress. For example, in contemporary studies of animal behavior, new tools and approaches for data-
driven discovery may arise at the intersection of neuroscience and data sciences.  In that context, a major 
challenge is the development of tools for representing and integrating data collected at different scales 
across the various embedded complex systems associated with neural systems and their behavior. Likewise, 
many other complex systems can benefit from model-driven experimental design drawing from 
interactions between theory and experiments. These interactions can in fact take many different forms, of 
which a formal collaboration is one of them. As an increasing number of researchers receive 
interdisciplinary training and develop research competency across disciplines, many advances in 
multidisciplinary complex systems research are expected to continue to come from projects pursued by 
individual researchers. Mechanisms for funding should acknowledge this plurality of research team 
compositions. They should also favor longer-term projects (e.g., 5-year as opposed to 3-year initiatives), 
giving the researchers the necessary time to expand their base of knowledge beyond their primary 
discipline, interact across fields, and explore their discoveries in depth. 
 
Some evidence was presented that opportunities for significant progress currently exist in both emerging 
topics and in classic topics within complex systems. One example is the area of self-organization, which 
has generated increasing interest over the past few years in connection with biological systems and active 
matter. At the same time, fundamental questions continue to exist and generate valuable discoveries in 
the now well-established area of pattern formation. Pattern formation is an example of self-organization, 
in which system components experience local interactions that lead to the emergence of global structures. 
Familiar examples include lane formation in traffic flows, Turing patterns, residential segregation by race 
and ethnicity, and phase transitions in multicomponent fluids. Figure 1 illustrates the case of Turing 
patterning with two kinds of diffusible molecules (activators and inhibitors), which mechanistically 
explains the color structure in the skin or coat of animal species. Research progress necessitates the 
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creation of a framework for predicting what classes of patterns result from particular sets of interaction 
rules, and vice versa. In systems where the rules are tunable, this would allow for control of the types of 
self-organized patterns that would emerge, which is a research question of current interest.  

 

 
 

Figure 1 
Emergence of patterns and colors in the skin of salmon, which is ultimately dictated by the morphology of the developing embryo 
and modeled as Turing patterning (adapted from Miyazawa et al. 2010). 

 
The group also identified and discussed challenges associated with the evaluation of multidisciplinary 
complex systems research and researchers. This included structural barriers that pose difficulties to the 
evaluation of young faculty and human factors that pose challenges to the assessment of papers submitted 
for publication or research proposals submitted for funding. For example, it is broadly recognized that it 
is more difficult to identify reviewers with expertise in all parts of a piece of scholarly production when 
the work is multidisciplinary. It was noted that while much progress on these fronts has been made—both 
by individual practitioners and by the institutions involved—significant difficulties inherent to the 
multidisciplinary nature of the field still remain. Part of the solution comes from acknowledging these 
issues and adopting practices to mitigate their effects. But the ultimate solution appears to lie in expanding 
the training of the next generation of multidisciplinary researchers and educators, which should be 
another priority of the field. 
 
It was also noted that complex systems have a unique potential to contribute to undergraduate education. 
Numerous U.S. universities and institutes have rich research programs in complex systems, and many 
such institutions offer undergraduate education and/or research training in complex systems; some also 
produce online educational materials, such as courses and syllabi (e.g., programs at the Santa Fe Institute, 
the University of Michigan, and Northwestern University). But this richness is not available to the average 
U.S. undergraduate student because of understandable constraints on student time and department 
resources. To address this, U.S. colleges could benefit from the development of educational materials that 
would illustrate aspects of complex systems phenomena in the individual STEM disciplines. One example 
would be the development and distribution of modular educational activities on complex systems that 
could be adopted into a professor’s lab or lecture schedule in any standard course (organic chemistry, 
thermal physics, microeconomics, etc.) at low time and resource costs. This content could be created by 
drawing from the materials that already exist and by collaborations between experienced professors in 
traditional disciplines and complex systems experts, and reside in a repository for free use by academics 
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across the country (and world). More broadly, the field should put emphasis behind the development of 
complex systems curricula. 
  
Finally, it was argued that aside from its fundamental contribution to research in STEM fields, further 
development of complex systems research will provide powerful new methods and insights for 
policymakers, managers, and stakeholders. For instance, one might imagine a model of a metropolitan 
area that integrates multiple aspects of the social, natural, and built environment. Such a model, which is 
now conceivable within the frameworks of agent-based modeling and network science, could be 
continually updated with streaming data drawn from administrative sources, social media, and the 
Internet of Things. Policymakers could use such a model to determine how a new infrastructure policy 
would affect residents' access to services, what kind of financial resources would be required, and its 
environmental impact.  
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Agent-Based Modeling 
 
 

gent-based modeling (ABM) is a powerful computational approach that enables the modeling of 
complex interactions of a large number of autonomous individual entities that produce system-level 

consequences (Wilensky & Rand 2015). A defining characteristic of ABM is that the models are simulated 
at the individual rather than the aggregate level, which allows fairly realistic representations of systems 
that are too complex to be represented with closed-form equations. ABM can serve as an in silico 
laboratory for assessing the global impact of local properties and understanding the dynamics resulting 
from different mechanisms; in addition, ABM is useful in performing theory exploration, intervention 
analyses, and general experimentation in many areas in natural, engineering, and social sciences (Miller 
& Page 2009). 
 
Although early ABM focused primarily on the study of emergent behavior determined by simple rules, 
current frontiers are centered on realistic data-driven modeling and very large-scale simulations while 
accounting for model validation, integration of disparate methodologies, and reproducibility. For ABM to 
be useful in studying real-world phenomenon, it is important to advance the use of models that are drawn 
from empirical data (Bruch & Atwell 2015). Many methods are currently being explored in this space, of 
which the automatic generation of agent-based rules directly from observed data is an example. Future 
research into methods for assessing a model's sensitivity to assumptions, the (near-)automatic creation of 
models from theory and data, and robust validation approaches could provide powerful tools for the 
multidisciplinary study of complex systems. As ABM becomes more detailed, a related challenge concerns 
the development of computational techniques for implementing large-scale ABM (e.g., Collier & North 
2013, Cordasco et al. 2013) that can take advantage of recent advances in high-performance computing 
resources. 
 
Another frontier concerns the integration of disparate research methodologies. For instance, lab 
experiments can be used to help generate agents' behavioral rules (Smith & Rand 2017); qualitative 
research can be used to ground the models; and traditional econometric analysis can complement ABM 
by providing ways to parameterize, analyze, and validate large-scale model outputs (Chen et al. 2012). One 
can further the current efforts to combine research approaches by developing best practices (i.e., by using 
cases and frameworks) for method integration. There has also been increased recent interest in developing 
and applying tools for the advanced exploration of the outputs of agent-based models (e.g., Thiele et al. 
2014, Stonedahl 2011, Ozik et al. 2016). A central problem in ABM is understanding which model 
components have the largest effects on model outcomes; developing new tools for sensitivity analysis and 
causal inference would allow researchers to better capture these dependencies.  
 
In the long-term, one can imagine a world in which ABM becomes a common technique in the toolkit of 
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every researcher working in complex systems, as statistics is now for many disciplines. Getting to that 
point requires the development of tools, methodologies, and frameworks that can explore the boundaries 
of multidisciplinary research, and also the adoption of practices to facilitate use of these techniques. In 
particular, given the variety of platforms and languages currently used for ABM, future research should 
encourage adoption of specification methods, such as ODD (Grimm et al. 2010), and of code archives, 
such as OpenABM (Janssen 2017), to enable reproducibility and facilitate collaborations across fields. 
 
 

Network Science 
 
 

etworks are tools for analysis in many domains, letting us represent complex systems and data with 
an emphasis on interactions between their constituents. This “network lens” allows us to probe 

multi-scale social interactions rather than just homogeneous populations, explore integrated metabolic 
networks rather than focusing on individual pathways, and model epidemics using contact networks 
rather than low-dimensional models. Many phenomena cannot be understood without understanding the 
structure of their underlying networks—networks are not a choice. In addition to being useful 
representations, networks are objects of study in their own right, with common phenomena and properties 
across domains. While networks in each domain (e.g., social, metabolic, and infrastructural) have unique 
properties, we can gain insights into all of them using shared language and techniques.  
 
Topological structure is a good first glimpse of a system, but “networks” are not just graphs. Nodes and/or 
edges are often dynamical systems; edges may have weights, capacities, and lengths; nodes may have 
locations, demographics, and content; networks can change over time, often have multiple types of links, 
and may include higher-order interactions in addition to pairwise ones. Network science embraces all of 
these types of structure and dynamics, and we are actively extending our tools to capture them.  
 
The early days of network science focused on simple statistics: degree distributions, clustering coefficients, 
“motif” or subgraph counts, centralities, and so on. But we have come a long way since then, and our 
colleagues in other sciences can gain enormously by connecting with current work. Here are some of the 
current frontiers and outstanding problems in network science: 
 
Dynamics, both on the network and of the network (Motter & Timme 2018, Holme & Saramäki 2012). 
Numerous applications involved coupling dynamics on the network (e.g., voltages on a power grid, 
neuronal oscillations, or populations in a food web) with dynamics of  the network (changing topologies 
due to breakdowns, learning, or the introduction of invasive species, respectively). The coupling between 
these two types of dynamics creates many new phenomena, and requires new mathematical tools to be 
properly addressed. 
 
New techniques in statistical inference (Clauset et al. 2008, McAuley & Leskovec 2014). Networks are 
high-dimensional datasets that are globally correlated, making many concepts from classical statistics 
inapplicable. Popular network analysis algorithms offer no guarantees of statistical significance and do not 
guard against overfitting. Moreover, real datasets are often biased samples of larger networks, violating 
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statistical assumptions like independence and exchangeability. As a result, there are now many open 
questions about how to perform statistical inference on networks in a mathematically principled way. 
 
Connections with statistical physics (Decelle et al. 2011, Mossel et al. 2015, Radicchi 2014). Just as a block 
of iron loses its magnetic field at a critical temperature, there are phase transitions where community 
structure and other features suddenly become impossible to find if a network is too sparse or too noisy. 
Identifying these phase transitions, making them mathematically rigorous, and designing optimal 
algorithms has led to a lively interaction between physicists, mathematicians, and computer scientists, in 
which open theoretical questions remain. 
 
New control theory (Motter 2015, Gao et al. 2014). Standard control theory mostly addresses small-scale 
deterministic systems, in which a small number of components interact within a well-defined architecture 
under the effect of small disturbances. Networks demand control approaches that can scale up to large 
assemblies of dynamic units, which are often nonlinear and only partially accessible to intervention. 
Remote synchronization, cell reprogramming, and control of cascades are exemplary applications. While 
recent progress has been made under simplifying assumptions, the broad problem of controlling networks 
under realistic conditions is an evolving topic of current research. 
 

Figure 2 
Modular structure of a weighted social network inferred from 
data using a nonparametric method (adapted from Peixoto 2018). 

 
Dealing with uncertainty and noise (Martin et al. 
2016, Platig et al. 2013). Measurement uncertainty 
includes missing links (e.g., unobserved connections 
in an ecological network), false positives (e.g., when 
two proteins are annotated as interacting even 
though they don’t work together in the cell), as well 
as the very nature of the interactions themselves (e.g., 
inhibitory or excitatory). How can we predict 
missing links, flag likely false positives, and dis-
entangle properties of the interactions? How does 
dynamical noise affect our ability to infer network 
structure (e.g., from correlations in time series)? 

 
Finally, the overarching goal of network science—understanding the relationship between structure and 
function—is still an enormous challenge, despite significant progress that has been made in this direction 
(as illustrated in Figure 2). What can the connectome of the brain tell us about its functional architecture? 
How does the protein interaction network translate into phenotype and physiology? Conversely, how do 
network functions, resource limitations, and selection pressures modulate the topology of interactions 
among components? 
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Dynamical Systems 
 
 

ynamical systems is an area of mathematics that comprises a collection of techniques used to 
analyze and understand the time-dependent behavior of a system, typically through use of ordinary, 

partial, delay, and stochastic differential equations as well as differential-algebraic equations, difference 
equations, and discrete-time models. Dynamical systems tools are important for helping understand a 
variety of properties and phenomena in complex systems, including stability, bifurcations, invariant sets, 
and chaos. Experimental studies in this area cover a broad range of interests and methods and include 
studies of fluids, engineering systems, model population systems, biological systems, and chemical 
reactions, just to name a few. A closely related area of research is that of control theory (Murray 2003), 
which provides the principles and methods used to design engineering systems that maintain desirable 
performance by automatically adapting to changes in the environment. 
 
The area of dynamical systems has established a broad repertoire of tools for studying complex systems. 
This includes the classical field of geometric singular perturbation theory, which remains very active, but 
new directions have also been explored in recent years. For example, tools have been developed to detect 
coupling or causal relationships in a system (Butail et al. 2016, Sugihara et al. 2012). Analysis and 
determination of bifurcations are well-developed for low-dimensional systems, but more research is 
needed to determine how to make best use of them in very large-scale, heterogeneous, high-dimensional 
systems. This research is particularly relevant in the context of tipping points discussed in the section on 
regime changes.  
 
Recently, data assimilation techniques have been successfully developed that allow the incorporation of 
real-time data into predictions of future behavior (Law et al. 2015, Abarbanel 2013). These tools are being 
used with enormous success in weather forecasting as well as in related problems such as solar and wind 
prediction. Further development of data assimilation techniques can be applied to a variety of other fields, 
such as feedback-based neuromodulation, power system load forecasting and dynamic line rating, and 
personalized medicine. More generally, there are ample opportunities for data-driven modeling and 
analysis (including machine learning) given the increasing availability of very large-scale data sets, 
especially in biomedical fields (Murdoch et al. 2013). Topological data analysis methods are related 
approaches for examining both numerical and experimental data exhibiting complex patterns (Carlsson 
2009), which provide an alternative to some of the standard techniques, such as correlation or spectral 
analysis. There have been a number of successes in this area, such as in brain (Giusti et al. 2015) and 
genomics (Camara et al. 2016) research, and broader dissemination of these methods is likely to yield 
relevant results in other areas of complex systems.  
 
Another area of expanded activity is in the use of computer-assisted proofs that might allow researchers 
to move beyond numerical simulation and establish more rigorous and potentially general conclusions. 
Combining interval arithmetic with analysis could allow for exact validation with a mathematical proof. 
For example, one can guarantee that certain types of periodic orbits occur or that a bifurcation structure 
exists. While research in this area has a long history, which can be traced back to the computer-assisted 
proofs of Feigenbaum conjectures (Lanford 1982), this research remains timely because of the potential it 
has to address multidisciplinary complex systems problems. 

D 



  11 

 
To take advantage of the opportunities in the expansion of dynamical systems tools for the study of 
complex systems, it will be important to enable interdisciplinary research that promotes both intra- and 
inter-institutional interactions, and to disseminate research results and techniques across disciplines.  
Some examples of research gaps and promising directions include: 1) better methods for linking fidelity 
and detail in models to the intended uses of those models (e.g., when implementing dimensionality 
reduction methods, what is the appropriate reduced dimension to retain?); 2) better approaches to study 
systems with only partially known dynamics, of which biological systems are prime examples; 3) better 
tools for probing complex systems to build mathematical models (e.g., to reconstructing the network 
structure from data); and 4) scalable approaches to manipulate and control the behavior of complex 
systems, possibly in combination with tools from network science (Zañudo et al. 2017). 
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Nervous Systems and Behavior  
 
 

he subject of brain and behavior spans a broad range of systems, from genes to cells to neural systems 
to organisms to groups of organisms to the cultures that those organisms develop. Each of these 

systems exhibits complex dynamics while being embedded in the systems at levels above and below it. In 
many cases, these systems have network structures that change over time (from synaptic remodeling to 
cultural change) as a result of activity in the network itself and those above and below it. A major challenge 
for this field is to understand how each of these complex dynamical systems relates to the other. 
 
Neural systems encompass a wide range of spatial and temporal scales—from small organisms with 
hundreds of nerve cells, to tissues of thousands of nerve cells, to brains of higher organisms comprising 
billions of cells. At the subcellular level, synapses mediate communication between cells; at the cellular 
level, individual neurons may be quiescent or autonomously active, and the activity can be regular, 
irregular, or bursting; at the whole brain level, activity patterns reflect metabolic changes tied to activity at 
finer scales as well as the social context of the organism; at the cultural level, the cognitive biases of learners 
shape the structure of language. At all scales, problems concerning the function, structure, and dynamics 
of the system continue to challenge researchers, and data sets are rapidly increasing in size and coverage 
(Sejnowski et al. 2014). The complexity of the system makes it difficult to identify the right scale to begin 
exploration of a problem, and most existing techniques are unable to connect multiple scales. Addressing 
the many challenges in characterizing and understanding systems spanning multiple spatial and temporal 
scales, which cut across diverse research areas and require technical advances, will have far-reaching 
impacts. 
 
New technologies for studying brain activity have exposed the critical need for new theoretical and 
analytical approaches that can capture the most pertinent features of these complex systems (Churchland 
& Abbott 2016). The time is ripe for concerted application of the tools of complex systems analysis to brain 
and behavior. New and emerging technologies enable stimulation and recording of activity over a range 
of spatial scales simultaneously. These recordings involve a variety of imaging techniques, including 
imaging at the molecular level using fluorescent dyes sensitive to individual molecules, voltage, and 
calcium concentrations associated with sub- and super-threshold nerve activity (e.g., Yang & Yuste 2017), 
extracellular recordings using multi-electrode arrays (e.g., Jun et al. 2017), and functional magnetic 
resonance imaging covering activities of millions of nerve cells in distributed brain regions (e.g., Craddock  
et al. 2013). To complement these technological advances, we advocate for the research and development 
of theoretical, mathematical, and analytical tools for representing, integrating, and characterizing data 
from embedded complex systems across spatial and temporal scales. Major contributions are likely to 
come from the sciences of dynamical systems (Breakspear 2017) and complex networks (Bassett & Sporns 
2017). 
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There are numerous examples that illustrate the challenges to be addressed: 1) understanding the changes 
in the nervous systems of language learners where brain changes drive changes in language function, 
which in turn alters the nervous system at multiple scales; 2) deciphering the role of localized and large-
scale activity in modifying synaptic structure, which in turn alters the network over which the activity 
takes place; 3) understanding how system dynamics can route information flow in the functioning of 
distributed neuronal networks (Palmigiano et al. 2017); and 4) determining how the network structure of 
the brain is tied to the structure of the individual’s social network. For a specific example of the latter, we 
refer to the study illustrated in Figure 3, where two embedded complex systems (brain networks and social 
networks) influence one another dynamically: an individual’s connectivity in a social network affects their 
patterns of brain connectivity, which in turn may affect the individual’s social interactions (Schmälzle et 
al. 2017). 
 

 
Figure 3  
Interaction between brain networks and social networks as an example of multiscale analysis (adapted from Schmälzle et al. 2017).  

 
 

Community-Based Systems 
 
 

ommunity-based systems (CBSs) are inherently complex. Communities include cities, villages, large 
organizations, nations, and any system in which individuals either self-describe as members of the 

community or are allocated to a community by a third party. CBSs include all of the complex systems that 
affect members of those communities such as infrastructural, health, political, industrial, economic, and 
environmental systems. Thus, CBSs are inherently a multi-layered network of multiple systems, many of 
which were not designed to work together and all of which are continually changing. Pervasive and 
dynamic interdependencies greatly contribute to the behavior of the CBS. Complex systems research 
enables the study of CBSs because it provides tools and methods for the interdisciplinary integration of 
different domains or fields, such as epidemiology, public health, economics, urban planning, sociology, 
policy, transportation, anthropology, engineering, political science, networks science, etc. Advances 
needed include improving the understanding of and informing decisions about the design and 
management of CBSs, as well as expanding contributions to the current scholarship by adopting novel 
methods and promoting interdisciplinary collaborations. 
 
Traditionally, CBSs are evaluated from (or at least favor) one perspective, such as that of the policymaker, 
the landowner, etc. In reality, the perspectives of all inhabitants in a community should be taken into 
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account. Accordingly, an integrated perspective can provide a more comprehensive framework for the 
construction of CBS models.  
 
In addition, it is often a challenge to understand what interdependencies are relevant to particular research 
and decision-relevant questions, so methods for ascertaining what to include and how to integrate it would 
be appropriate. For instance, we observe the rapidly increasing impact of interconnections among 
technology and social systems (so-called cyber-physical-social systems). Such systems provide an 
important example of the challenges of understanding, modeling, and integrating information from many 
sources and fields. This includes addressing the impacts of the use of social media, the democratization of 
technology, and the burgeoning of capabilities like gig economy environments (e.g., Uber and Lyft) and 
advanced logistics (e.g., near-free delivery of goods). In addition to being an area of research in its own 
right, this work can add significant value to the existing efforts of smart, connected cities (Gray et al. 2011). 
 
In most CBSs, we have one instantiation of the real world that we can observe, and so validating a model 
or theory against that instantiation can be difficult. Moreover, determining the appropriate level of 
modeling for these systems, and determining how to best integrate multiple scales of modeling, are not 
well understood. Complex systems research also integrates capabilities from dynamical systems, agent-
based modeling, and network science (noted in this report) that directly apply to CBSs and provide 
frameworks that enable sensitivity analysis, testing of model robustness, and using uncertain or 
ambiguous model results to usefully inform decision making. However, work still needs to be done to 
satisfactorily develop and integrate these frameworks and to validate the associated models. 
 
Finally, advances are needed in the evaluation of success. In many cases, there is an explicitly stated goal 
of studying a CBS to understand how to make the system “better.” However, CBSs are made up of 
numerous stakeholders with different and sometimes opposing needs, thus no solution will address all 
needs. Moreover, as CBSs typically operate for extended time periods, concepts related to interoperability, 
upgradability, extensibility, sustainability, etc., must also be considered in system improvements. The goal 
of some innovative research into CBSs may be not to incrementally modify the current system, but rather 
to foment a transformative revolution that essentially redesigns these systems from the ground up, such 
as in the development of an urban system in which human behavior and the natural environment are 
coupled sustainably. Since complex systems research embraces dynamic, non-equilibrium measures, it 
will be useful to build on these measures in developing rigorous notions of success for CBSs. (For 
additional information on CBSs, see references CBS1 to CBS6.) 
 
 

Collective Behavior Arising from Molecular to Micro Scale Interactions  
 
 

umerous topics have emerged from studying the collective behavior that results from primarily local 
interactions between particles of a system, where particles may be individual atoms, molecules, or 

microscale entities (e.g., colloids or bacteria). This perspective forms the basis of various fields, including 
meta-materials, active materials, responsive chemical systems, and synthetic biology. Efforts have focused 
on characterizing these systems and engineering new systems with desired behaviors. To foster these 
efforts, an improved understanding of non-equilibrium statistical mechanics is needed, as is the 
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adaptation of computational and experimental approaches used in other contexts, such as agent-based 
modeling, network science, single-molecule measurements, microfluidics, and imaging techniques.  
 
A prominent emerging domain is active matter, which concerns systems (biological or not) composed of 
agents that consume energy and are thus out of thermal equilibrium.  Such systems require non-
equilibrium statistical characterization as they include physical or chemical driving forces acting on each 
system component separately, and energy cascades from small to large scales. An area of particular interest 
in the field of complex molecular behavior lies in harnessing non-equilibrium processes to enable the 
engineering of self-organizing materials capable of autonomous motion and programmed tasks. Driving 
matter out of equilibrium makes it possible to synthesize materials with bio-inspired functions, including 
autonomous motility, self-replication, force generation, and adaptive mechanics. The ultimate goal is to 
design non-equilibrium processes to achieve desired functions. This will be possible by developing a new 
framework to process and encode information in heterogeneous materials.  

 
 
Figure 4 
Active nematic liquid crystal exhibiting patterns similar to those that 
emerge from flocking birds and schooling fish (adapted from Sanchez 
et al. 2012).  

 
The coupling of experiment and theory at the molecular 
or micro-scale is now making it possible to build an 
understanding of self-organization at this scale that can 
be applied at much larger scales to engineer biomimetic 
materials and meta-materials. For example, DNA 
origami demonstrates that it is possible to design the 

subunits necessary to produce a desired self-assembled structure (Praetorius & Dietz 2017), and adaptive 
materials have been synthesized to assemble responsive and self-healing gels (Stukalin et al. 2013), 
membranes for filtration and sensing (Šarić & Cacciuto 2013), magnetically-driven polymers and 
membranes, and self-replicating colloids (Dempster et al. 2015). In addition, fluid dynamic effects on 
driven colloids continue to produce surprising behavior (Driscoll et al. 2017), including the clustering and 
propulsion of particles. The presence of molecular-scale particles can perturb an environment, such as a 
membrane, in a way that feeds back and facilitates the self-organization of those very particles (Liu et al. 
2015). An intriguing new quantum physics example of a system with non-equilibrium, emergent 
properties is time crystals, a class of materials that exhibit ordered repetition in time, rather than in space 
(Zhang et al. 2017, Choi et al. 2017). Collaboration between experimentalists and theorists has also 
produced a breadth of knowledge on fundamental hydrodynamic physics in soft matter (Marchetti et al. 
2013). Work on cytoskeletal filaments, motors, and energy demonstrates (Schaller et al. 2010, Sanchez et 
al. 2012) the biological relevance of active matter systems and how computational modeling can describe 
these systems (Keber et al. 2014). An example of the latter are structures formed by the self-organization 
from biological filaments (microtubules) and molecular motors that use ATP as an energy source (Sanchez 
et al. 2012), as shown in Figure 4. 
 
The grand challenges for future research stem from the fact that harnessing non-equilibrium processing 
to transform matter into performance materials requires an understanding of the ways in which various 
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energy forms (chemical, optical, thermal) are converted into motion. That is, how is the energy injected 
at the microscale converted into organized motion and function at the large scale? A key challenge is thus 
learning to encode, process, and act on information within highly fluctuating and complicated 
environments, as occurs so effectively in living organisms. In particular, the range of research challenges 
include: 1) classifying active systems based on modes of energy input, symmetry, and interaction with the 
environment; 2) formulating the continuum mechanics of growing and reproducing materials with states 
that may depend on deformation, external perturbations, or chemical signals; 3) developing a theoretical 
framework to describe the adaptive mechanics of active materials in response to external forces; 4) 
formulating a framework that explains information storage, transmission, and processing in the context 
of non-equilibrium statistical mechanics; and 5) developing a theoretical understanding of biological 
organization as a far from equilibrium process. Ultimately, advances in theory and computation are 
expected to enable a new paradigm of in silico materials design and testing.  
 
 

Food, Energy, and Water Systems 
 
 

ow can nine billion people thrive and prosper equitably on one planet? The health and security of 
humans and the environment rely on highly interconnected food, energy, and water (FEW) systems. 

These systems are both complex and complicated, with multiple interdependencies and feedback 
processes (Pereira et al. 2017). Questions on food, water, energy, and human health security are urgent, as 
illustrated by the concept of “Planetary Boundaries” (Rockström et al. 2009). The nine boundaries 
identified in this seminal work are all directly or indirectly related to the FEW nexus: climate change, 
ocean acidification, stratospheric ozone depletion, the nitrogen and phosphorous cycles, global freshwater 
use, land use change, biodiversity loss, atmospheric aerosol loading, and chemical pollution. Many of these 
boundaries have already been crossed and others are approaching critical thresholds, indicating that FEW 
systems are in danger of either failing themselves or endangering key earth system processes (as 
characterized in Figure 5).  Furthermore, since these systems are interconnected, stress in one area reduces 
resilience in other areas. A central goal of FEW systems management is to understand how to build and 
manage resilience, preserve ecosystems’ functions, inform decision making under uncertainty, 
understand the limits of prediction, and investigate effective systems of governance (e.g., Hannam et al. 
2015).   
 
Given the nature of the FEW nexus, complex systems science is uniquely positioned to advance FEW 
systems knowledge and management. Here, we discuss how multidisciplinary complex systems 
approaches provide insight into three key areas: (1) food and water security; (2) energy supply and 
sustainability; and (3) crosscutting “nexus” questions. 
 
Food and water security. We consider food and water security together, as these systems are highly 
interlinked and can be described with similar approaches. Food and water systems encompass everything 
from food production and the hydrological system to allocation, distribution, trade, governance, 
consumer choice, and social norms, with multiscale feedbacks among these processes (Leck et al. 2015, 
Nesheim et al. 2015, Acharya et al. 2014, Ingram 2011). They have their own internal dynamics, are subject 
to external forces (e.g., both are highly influenced by the Earth’s climate system) and stochastic variations, 
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and are strongly dependent on ecosystem health. While climate processes are largely determined by the 
laws of physics and chemistry, the processes that make up food and water systems are also strongly 
influenced by cultural and societal norms, governance, and social conflict (Acharya et al. 2014, Beddington 
et al. 2012, Brown et al. 2015, FAO 2017, Ng et al. 2014, Raworth 2017, Rockström et al. 2009, Wilson 
2006). Tackling these interconnections requires integrating models for the behavior of agents in socio-
economic systems with resource dynamics in ways that go beyond patching together disciplinary models.  
 

 
Figure 5  
The nine planetary boundaries and their current status (Rockström et al. 2009). 

 
 
Energy supply and sustainability. Energy balance, dissipation, and storage are examples of a set of physical 
constraints on complex systems. The global energy balance has profound effects on climate dynamics and 
the flow of water resources. Energy accumulates in food resources, is transferred through various food 
chains, and is stored and dissipated in living organisms (including humans). Energy resources govern the 
growth of the human population, where the overabundance and undersupply of food resources 
determines the health or malnutrition of the population. Advances on accounting for such conservation 
principles will help establish connections with other areas, such as climate and human health, that impact 
or are impacted by food, water, and the environment. 
 
Crosscutting nexus issues. Development of multiscale theory and models for the food-water-health-
energy-security nexus is in a more primitive state than, for example, modeling climate systems or the 
energy grid. Until recently, the main food systems analysis tools involved statistical models based on linear 
techniques or detailed process models (e.g., of soil fertility) designed to address specific questions but not 
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designed to integrate into a larger system. The very fact that food and water are now viewed as vivid 
examples of interdependent complex systems in which the flow of natural resources is coupled to human 
decisions and behavior is a novel and transformative achievement of complex systems science. (Ingram 
2011, Ingram & Zeeman 2015, Levin & Clark 2010, Wilson 2006). Addressing “nexus questions” requires 
a new framework to translate system function at various levels of complexity, organization, and 
heterogeneity into state variables and observables. Major crosscutting questions that will benefit from the 
development of common frameworks and methodologies include: 1) can we characterize the speed and 
magnitude of failure propagation in the global and regional FEW systems due to sudden shocks or chronic 
stresses? 2) What are signatures of approaches to critical transitions in the global food-water-health 
system? What governance systems best address decisions, interventions, adaptations, and mitigations at 
multiple scales? 3) How might we initiate, facilitate, value, inform and/or further advance cooperation in 
responses and sustainable governance of the commons? 4) How might we structure connections between 
FEW components to minimize vulnerability and confer system resilience? 5) Are we making necessary 
progress in regions where FEW system instability represents an urgent and growing threat? 
 
A persistent challenge across these research areas concerns the availability of data of sufficient quality, 
which can inform monitoring, evaluating, and modeling of the relevant aspects of these systems. Data 
sources are numerous and diverse, including private owners, government agencies, and publicly funded 
research projects in various domains, and data rights can be complex. It is therefore essential that 
monitoring campaigns, data collection, and analysis are conducted with explicit knowledge of how the 
data will be used and, when used as part of a modeling effort, that the model helps drive data collection to 
ensure that the data will be of sufficient quality and appropriate type. In addition, in the spirit of generating 
rich datasets that are open and shared, monitoring, collection, and analysis efforts must be supported by 
a strategy for data and model curation that ensures the availability and continuity of datasets that retain 
all necessary information (metadata) for their ongoing use in new applications. 
 
Core approaches of complex system modeling remain open problems—and opportunities—for gaining 
traction of key questions in FEW nexus research. Critical challenges include dimensionality reduction in 
multiscale models, model simplification through coarse-graining of dynamics, embedding of the system 
of interest within proper boundary conditions, identification of energy balance, dissipation, and storage, 
and decoupling of nonlinear feedbacks to drive systems based off observations.  
 
 

Regime Change and Resilience 
 
 

any of the most urgent and compelling problems faced by science and society entail critical 
transitions in evolving, multicomponent systems under cumulative perturbations (see, e.g., Figure 

6). These systems and problems cross scale and disciplinary boundaries. They include cellular and 
physiological studies of transitions from healthy to diseased states (Rikkert et al. 2016, Boettiger & 
Hastings 2013); ecological transitions from productive, biodiverse scenarios to population collapse 
(Scheffer & Carpenter 2003); and transitions in glacial cycles on geologic timescales (Scheffer et al. 2009). 
The transitions we wish to describe may also involve a new state that is more desirable than the previous 
one (e.g., transition to a carbon-free economy). Yet, our ability to understand and describe such systems—
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let alone predict their behavior—is limited. An important challenge associated with the study of 
transitions in large-scale systems is that such systems are often unique (e.g., there is only one Earth, and 
its evolution will follow only one out of many possible paths), which disallows us from relying on large N 
experiments.  
 
Here we describe three key areas where work is needed to further develop experimental, theoretical, and 
modeling approaches for such systems: 1) designing effective experiments; 2) reducing dimensionality 
while maintaining fidelity to essential system features; and 3) using adaptive management to extract 
information about system behavior (learning from low N). One potentially useful framework for the latter 
is provided in March et al. 2003, where (while focusing on historical inference in organizations) the 
importance of independently considering the reliability and validity of a particular history is highlighted.  

 
 

Figure 6  
Observed (top) and predicted (bottom) vegetation 
patterns along a gradient of precipitation from arid 
to semi-arid (adapted from Gowda et al. 2014). 

 
A fundamental question concerns how to 
predict the approach to a transition (or 
“tipping point”) with sufficient warning 
time (Dai et al. 2012). While progress has 
been made on identifying markers or in-
dicators for transitions (e.g., oscillations), 
substantial gaps remain in our ability to 
assess how far away a particular system is 

from a transition (Lim & Epureanu 2011, D’Souza et al. 2015, Lade & Gross 2012). Once a transition 
occurs, additional work is needed to characterize the possible existence of hysteresis in the system, 
including whether and how return to a previous state is possible.  
 
In building models and designing useful experiments, another fundamental question concerns how to 
distill the behavior of large systems to more manageable smaller systems (or how to use small systems in 
one field to describe large systems in other fields). Although there is a substantial body of literature on 
dimensional reduction, it is not yet known how to successfully capture the behavior of complex systems 
in general. This is especially true when there is no clear separation of time scales. Moreover, the presence 
of time-dependent interactions, non-conservative fields, interacting feedback mechanisms, and far-from-
equilibrium conditions challenge our ability to theoretically describe regime changes. To capture the 
behavior of such complex systems, we need to extend methods and concepts of statistical physics (e.g., 
phase transitions) and dynamical systems (e.g., bifurcation theory).  
 
Finally, given the existing uncertainties regarding system structure, system dynamics, and system response 
to perturbation, how can we effectively combine available information sources to manage systems on 
which our well-being depends? Often, the goal of management (e.g., in ecosystems and societal systems) 
is to nudge the system towards more favorable paths. Even the process of identifying the right 
measurements to characterize these paths remains an open theoretical problem, which requires 
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integrating expertise from data science, control theory, optimization, dynamical systems, and information 
theory. 
 
Of particular interest to this area of study are biological and ecological systems, which contain multiple 
redundancies and structural principles that give rise to resilience (Adler et al. 2017). Also of interest is to 
consider the various classes of engineered systems whose designs are increasingly inspired by those of 
living systems. Current trends in adaptation and resilience are in fact shifting away from a paradigm of 
(over)engineering to avoid catastrophic failures to adopt instead a paradigm of engineering systems to fail 
gracefully (Nemeth et al. 2009). 
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he previous NSF workshop on complex systems was held in 2008 and centered on the Foundations 
for Complex Systems Research in the Physical Sciences and Engineering (Guckenheimer & Ottino 

2008). The 2008 workshop report and recommendation emphasized cross-cutting fundamental research 
on complex systems that transcended individual complex systems. The NSF made some modest efforts at 
implementing the recommendation, including one call for collaborative proposals—Building Engineered 
Complex Systems (BECS)—and a set of awards.  
 
The most significant development since the publication of the 2008 report has been the considerable 
expansion of the scope of the field of complex systems. While that report was focused primarily on the 
intersection of mathematics and engineering and on a common foundation in the mathematical theory of 
dynamical systems, the current report is significantly broader and includes examples of complex systems 
from the physical, chemical, biological, and social sciences, in addition to engineering and computer 
science. This is a positive development, since it reflects the broad awareness in the scientific community 
that the traditional reductionist approach may need to be complemented by a more contemporary systems 
approach. However, it is less clear that there is a trend toward a science of complex systems, which was 
the assumption underlying the convening of the previous workshop. 
 
Four questions were posed in the previous report. We assess briefly the research progress that has occurred 
since 2008 in addressing those questions. 
         
1. What are the best models for representing and analyzing the properties of complex systems?  Noticeable 
progress has been made in the formulation and analysis of data-driven models.  Approaches such as 
“equations-free modeling” and “dynamic-mode decomposition” produce low-dimensional dynamical 
models from observational data. In addition, there have been significant efforts in the application of data 
assimilation techniques to models across many research areas in physical and life sciences systems.  
Examples include intracellular networks, systems and synthetic biology, biophysical modeling of neurons 
and functional networks, neuromorphic engineering, electrical and chemical engineering, hydrological 
models of streams and lakes, flows and transport of toxic products, identification of oil and gas reservoirs, 
and, of course, for decades, numerical weather prediction. In various areas, complex systems are still often 
modeled by first-principle approaches, but even in those areas, increasing effort has been geared toward 
the development of data-driven models. The validation of such models is a topic of current research. 
 
2. What is the relationship between the structure of a complex system and its dynamics?  The area of 
network science has expanded tremendously over the past decade, and there has been progress in 
understanding the role of network structure in shaping the dynamics of complex network systems.  
Network science has placed substantial emphasis on the role of the graph topology and the impact of 
structural properties such as degree distribution, clustering coefficient, and centrality and spectral 
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properties of the network. Nonetheless, progress has also been made beyond purely topological analysis. 
For example, in the study of networks of signal transduction and gene regulation, a number of network 
models with parameterized dynamics have been constructed and experimentally validated over the past 
decade; the connection of structure and function has been explicitly explored in such models, and 
computational tools to identify this connection have been developed. Some progress has been made on 
the interaction of the structure of a complex network and its dynamics in the important case in which not 
only the dynamics of individual nodes and/or links depend on the network structure but also the structure 
of the interaction network depends on the node and link dynamics.  
 
3. What are the consequences of evolution and adaptation in complex engineered systems?  This section 
of the 2008 report discussed the power grid as an archetype for an evolving engineered system. The 
changes in the grid have accelerated substantially, and there has been a qualitative increase in research on 
the effects of this evolution.  More generally, the field of cyberphysical systems—including smart grids, 
the Internet of Things, and autonomous vehicles—has advanced as a discipline and provides many new 
examples of evolution and adaptation of complex and engineered systems. Progress has also been made 
outside engineered systems, particularly in social sciences, owing to the increased availability of high-
quality temporal data (from mobile phones, social networking sites, and other sources). This has allowed 
researchers to empirically track evolution and adaptation in complex social systems and has enabled 
reliable model validation.  
 
4. How do we calibrate complex systems and predict their behavior?  Theoretical advances in data 
assimilation and uncertainty quantification have led to significant improvements in our ability to make 
weather forecasts that are valid for longer periods of time and have reliable probabilistic estimates 
associated with them. This has been facilitated by progress in using large-scale computation for model-
based predictions and forecasting, including applications in climate modeling, as well as changes in the 
amount of data available and the ability to perform data analytics. But mathematical development has also 
been noticeable, as illustrated by progress in the characterization of tipping points in various systems. In 
particular, methods are currently being developed for the identification of imminent transitions and for 
managing of complex systems to avoid undesirable transitions. 
 
Despite the major advances in theory, computation, and the use of data, progress in the context of the 
vision of the 2008 report has been modest and uneven. The rapid development of machine learning in 
computer science has seen some application to the study of complex systems, though many of the most 
advanced methods (e.g., deep neural networks) have not yet progressed to the point where they provided 
structured representations that are amenable to mathematical analysis. The combination of models at 
various levels of description, large-scale data sets, and advanced computation (e.g., to perform calibration, 
prediction, and analysis of complex systems) is still an area with many challenges and opportunities.  
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